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Archaeology of Privacy

* Very first adversary: physician

* Only credible person entering your home/intimacy
=> Only possible channel of information leakage

* Health information already considered very sensitive

First privacy-preserving mechanism:
Hippocratic oath (5th century B.C.) '””OJEEJ‘;TO”
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Modern Privacy

Internet communications

Web browsing/fingerprinting

YOU ARE HERE
(and we know it)
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How about health condition and data”?




Deluge of Blomedical Data

 Decreasing cost of molecular profiling tests

* Fueling the precision medicine revolution

Google
Genomics

* |Increasing amount of biomedical data available e

 Not only on “trusted” DB such as hospital servers

 Avallable on online public databases too OpenS N P

Gene Expression Omnibus

Hippocratic oath is not sufficient anymore



Health DB Breaches

* Attacks against healthcare companies

* E.g., health insurer Anthem: 78 million records
put at risk

* 91% of healthcare companies experiencing
a violation of their DB over the last two years

* Only 32% feeling they have adequate resources to
defeat these incidents

* Sensitive health data of thousands of
patients ending up online due to a human
mistake

Bilans de sante en balade surle
net

GAFFE — Des données médicales ultraconfidentielles de
patients romands ont été librement accessibles durant des
jours sur Internet. Le groupe Synlab déplore une erreur
humaine.

Par Raphaél Pomey . Mis a jour le 08.04.2015 =
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Genomic Privacy

* Already studied quite extensively by the security/privacy community

Categorization of techniques for breaching genomic privacy [1]

Technique Maturation Technical | Auxiliary
Level complexity | information

Identity Tracing

Surname Inference * % % * 1) Intermediate-
Good

DNA Phenotyping * % oo Poor

Demographic identifiers * % K % . Good

Pedigree structure * % K oo Poor

Side channel leakage * %k Kk coe Varies

Attribute Disclosure Attacks via DNA

N=1 % % %k oo Good

Genotype frequencies * % % ooe Good

Linkage disequilibrium * % sece Intermediate

Effect sizes * % oee Good

Privacy of other types of health-related data®?

[1] Erlich and Narayanan, Routes for breaching and protecting genetic privacy, Nature Reviews Genetics, 2014
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The Human OSI
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The Human OSI Stack

* SNP * DNA methylation * Gene expression * Protein * Metabolite |
* CNV * Histone modification * Alternative splicing expresssion profiling in
* LOH * Chromatin * Long non-coding * Post-translational serum, plasma,
* Genomic accessibility RNA modification urine, CSF etc. |
rearrangement * TF binding * Small RNA * Cytokine array |
* Rare variant * miRNA /l
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Phenome

* Cancer

* Metabolic
syndrome

* Psychiatric
disease




Definition: study of cellular and phenotypic trait |
variations stemming from other causes than |

cpigenetics and MicrorRNA

| MicroRNA (miRNA)

discovered in the early 1990s

Epigenetics
‘epi”: above, over (greek)
“‘genetics”; origin (greek)

Definition: small non-coding RNA molecules |
that regulate gene expression in plants/animals |
60% of genes coding human proteins are |

changes in the genotype regulated by miRNAs

External factors such as:
iINn-utero and childhood development,
environmental chemicals, aging, diet.

CXPIess

MicroBNA
I0NS

Real-valued numbers

" how much miRNAs are |
| active in a given set of
cells/tissue.




What Is the Role of MicroRNAS?

But all cells have the same genes!

HEART MUSCLE
BRAIN CELLS
CELLS
& - e
I\  RED BLOOD

= ; CELLS

FAT
CELLS

Chromosomes: carry hereditary information
in long strings of DNA called genes

T (a region‘of DNA)

What makes the cells different:

gene expression
(which genes are active in a cell)

Graphics: genographic.nationalgeographic.com
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http://genographic.nationalgeographic.com

What Is the Role of MicroRNASs?

What makes the cells different:

gene expression
(which genes are active in a cell)

MIRNASs regulate most of human genes!

B important for normal and disease cells

neurodegenerative diseases (e.q., Alzheimer’s)
heart diseases, diabetes, majority of cancers

11



Viore on DNA and MicroBRNAS

DNA MIRNA

contains receipts what a cell e expression regulates what a cell

potentially can do, really does,
IS (mostly) fixed over time, e expression changes over time,
can hint on risks of getting a disease, * can tell whether you carry a disease,

privacy of the genome has been
researched a lot.

» 35O far, privacy of miIRNA has been
largely overlooked.
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| Inkability Attacks

Common beliet: no privacy threats from miRNAs,

black market

dentification because of temporal variability

matching [ 8 fo

public DB . .

(such as the Gene ‘ — — .
”~

Expression Omnibus)
;\ .

cyber attacks against
healthcare companies
have increased by 72%
within one year
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Athletes’ Dataset

Participants: 29

Points in time: 2 (before and after exercising)
Time shift: 1 week

Disease: none

blood-based plasma-based

1,189 mIRNAS per sample
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. ung Cancer Dataset

Participants: 26

Points in time: 8

Time shift: mostly 3 months
Disease: lung cancer
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Attack Formalization

t1 [o

1,189 mMIRNAS
per sample

{rfl i1 {r? Fieq



1,189 mIRNAS
per sample

Pre-processing Step

PCA +
whitening

whitening: unit variance
PCA: smaller dimensionality m
+ uncorrelated components

vector with m
dimensions
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|dentification Attack
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Proportion of correctly identified pairs
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|dentification Attack - Results

|Identification of blood/plasma miRNA samples
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Matching Attack
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Matching Attack - Results
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Matching Attack - Results

i\/l(?tchmg of blood/plasma MIiRNA samples w. r.t. size of the datasets 1.0 Robustness w.r.t. number of MIiRNAs
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Matching Attack - Results

Matching of plasma samples with increasing time distance
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Proportion of correctly matched pairs

sUCCcess rate remains more or
less constant In the first year




|[dentification Attack Matching Attack
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Common belief: no privacy threats from miRNAs,
because of temporal variability
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Countermeasures

1. Hiding non-relevant miRNA expressions

e Suitable especially for diagnosis

* Relevance determined by the p-values of mMiIRNA expression in disease-association tests

e Downside: correlations between miRNAS

2. Probabilistically sanitizing the miRNA expression profiles
e Suitable for both biomedical research and diagnosis

* Noise added in a fully distributed and differentially private manner
=> providing epigeno-indistinguishability

* Noise drawn according to the multivariate Laplacian mechanism

32



Privacy-Utility Trade-Off

You can rarely get both 100% privacy and 100% utility

Privacy: Unlinkability, with blood-based athletes mIRNA
expression dataset

Utility: Accuracy In classitying patients between cases
(carrying a disease) and controls, using a support vector
machine (SVM) classifier

New dataset for evaluating utility: >1000 patients, 19
diseases, 1 single time point, 446 expressed miIRNAS

33



Hiding MicroRNAs

Multiple sclerosis

Multiple sclerosis:

SVM classifier’s top

accuracy = 0.992;
with 40 miIRNAs

(baseline utility)

Best trade-off:
1% utility decrease;
50% privacy increase;
with 7 miIRNAS

Prop. of correct matching / Accuracy of SVM
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Hiding MicroRNAs

Glioma:
SVM classifier’s top
accuracy = 0.927;
with 19 miIRNAS

(baseline utility)

Best trade-off:
1% utility decrease;

80% privacy increase
with 4 mIRNAS

Prop. of correct matching / Accuracy of SVM
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MIRNA Co-Expression

1.0
Assuming the adversary
infers perfectly the S os
MiRNASs correlated with =
those released by the //
hiding mechanism,

and uses them for
his matching attack

Prop. of correct matching /
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O
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Matching attack with correlated miRNAs
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Probabililistic Sanitization

* Providing &-epigeno-indistinguishability to the miIRNA
expression profiles

Pr(K(ry) € .%) <exp(edy(ri,rp)) X Pr(K(rp) € .7)

* Achieved by adding multivariate Laplacian noise to the
original miIRNA expression vectors (of dimension m)

First, sample the magnitude of the noise from a Gamma distribution
with shape m and scale 1/&

Second, generate the direction by randomly sampling points on the
surface (of dimension m-1) of a hypersphere
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Probabililistic Sanitization

Multiple sclerosis:

SVM classifier’s top

accuracy = 0.992;
with 40 miIRNAs

(baseline utility)

Best trade-off:
0.65% utility decrease;
63% privacy increase;

at £€=0.025
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Probabililistic Sanitization

Tumor of stomach:
SVM classifier’s top

accuracy =

with 160 r

0.969;
IRNAS

(baseline

utility)

Best trade-off:
0.2% utility decrease;

/0% privacy
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Mechanisms Comparison

* Probabilistically sanitizing with Lap
orovides better privacy-utility trade-o
out of 19 diseases

inkability of miIRNA expressions by >
0SS of accuracy (< 1%) for the majori

* Hiding enables this decrease of linka

aclan mechanism

T than hiding, for 17

Probabilistically sanitizing enables to decrease

50% for almost no
ty of diseases

bility for the same

loss of accuracy for only 2 out of 19 diseases
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Conclusion

There exist privacy threats inherent to epigenetic data

Blood-based mIRNA expression protiles are easier to link
than plasma-based profiles

Adding noise to mIRNA profiles provides better utility-
privacy trade-off than masking them

Adding noise enables to double privacy provision at
almost no utility cost, for most diseases
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Future Directions

Studying in more detail mIRNA data properties

Supervised learning approach

Cryptographic mechanisms to protect miRNA expressions
Inferring membership in mMiIBRNA-disease association studies

Studying privacy risks with other types of data at the different
human O3Sl layers
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