
Privacy in Epigenetics: 
Temporal Linkability of 

MicroRNA Expression Profiles
Mathias Humbert 

Joint work with Michael Backes, Pascal Berrang, Anne 
Hecksteden, Andreas Keller and Tim Meyer

June 23, 2016

Summer Research Institute 2016 
EPFL, Switzerland

C ISPA
Center for IT-Security, Privacy
and Accountability computer science

saarland
university



2

Archaeology of Privacy

• Very first adversary: physician 

• Only credible person entering your home/intimacy 
=> Only possible channel of information leakage 

• Health information already considered very sensitive 

• First privacy-preserving mechanism: 
Hippocratic oath (5th century B.C.)
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Modern Privacy

• Internet communications 

• Web browsing/fingerprinting 

• Location privacy 

• How about health condition and data?
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Deluge of Biomedical Data

• Decreasing cost of molecular profiling tests 

• Fueling the precision medicine revolution 

• Increasing amount of biomedical data available 

• Not only on “trusted” DB such as hospital servers 

• Available on online public databases too

Hippocratic oath is not sufficient anymore
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Health DB Breaches
• Attacks against healthcare companies 

• E.g., health insurer Anthem: 78 million records  
put at risk 

• 91% of healthcare companies experiencing 
a violation of their DB over the last two years 

• Only 32% feeling they have adequate resources to 
defeat these incidents 

• Sensitive health data of thousands of 
patients ending up online due to a human 
mistake
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Genomic Privacy
• Already studied quite extensively by the security/privacy community

Categorization of techniques for breaching genomic privacy [1]

[1] Erlich and Narayanan, Routes for breaching and protecting genetic privacy, Nature Reviews Genetics, 2014

Privacy of other types of health-related data?
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The Human OSI Stack
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The Human OSI Stack



Epigenetics and MicroRNA

Epigenetics 
“epi”: above, over (greek) 
“genetics”: origin  (greek) 

Definition: study of cellular and phenotypic trait 
variations stemming from other causes than 

changes in the genotype

External factors such as: 
in-utero and childhood development, 
environmental chemicals, aging, diet.

MicroRNA (miRNA) 
discovered in the early 1990s 

Definition: small non-coding RNA molecules 
that regulate gene expression in plants/animals 

60% of genes coding human proteins are 
regulated by miRNAs

MicroRNA 
Expressions 

Real-valued numbers 
quantifying whether and 
how much miRNAs are 
active in a given set of 

cells/tissue.
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Graphics: genographic.nationalgeographic.com

Chromosomes: carry hereditary information 
in long strings of DNA called genes

But all cells have the same genes!

What makes the cells different:
gene expression

(which genes are active in a cell)

What is the Role of MicroRNAs?

(a region of DNA)
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What makes the cells different:
gene expression

(which genes are active in a cell)

What is the Role of MicroRNAs?

miRNAs regulate most of human genes!

↳ important for normal and disease cells

neurodegenerative diseases (e.g., Alzheimer’s) 
heart diseases, diabetes, majority of cancers 11



More on DNA and MicroRNAs
• contains receipts what a cell 

potentially can do, 
• is (mostly) fixed over time, 
• can hint on risks of getting a disease, 
• privacy of the genome has been 

researched a lot.

• expression regulates what a cell 
really does, 

• expression changes over time, 
• can tell whether you carry a disease, 
• so far, privacy of miRNA has been 

largely overlooked.

Common belief: no privacy threats from miRNAs, 
because of temporal variability

DNA miRNA
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Common belief: no privacy threats from miRNAs, 
because of temporal variability

black marketpublic DB  
(such as the Gene 

Expression Omnibus)

cyber attacks against 
healthcare companies 

have increased by 72% 
within one year

identification

matching
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Linkability Attacks



Participants: 29 
Points in time: 2 (before and after exercising) 
Time shift: 1 week 
Disease: none

Athletes’ Dataset

blood-based plasma-based

1,189 miRNAs per sample
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Lung Cancer Dataset
Participants: 26 
Points in time: 8 
Time shift: mostly 3 months 
Disease: lung cancer

plasma-based

before surgery
1,189 miRNAs per sample

months
1815129

after surgery

0 3 6-? 15
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1,189 miRNAs 
per sample
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Attack Formalization



1,189 miRNAs 
per sample

PCA + 
whitening

vector with m 
dimensions

whitening: unit variance 
PCA:         smaller dimensionality m 
                 + uncorrelated components

r
tj
k r̄
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k
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Pre-processing Step 
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Identification Attack
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Identification Attack
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Identification Attack



t1 t2

rt2i⇤

rt1k

{rt2i }ni=1
i⇤ = argmin

i

��r̄t2i � r̄t1k
��
2

��r̄t2i � r̄t1k
��
2

22

Identification Attack
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Identification Attack



76%

28%

42%

22%

similar number of PCA dimensions
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Identification Attack - Results
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Matching Attack
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Matching Attack



90%

48%

55%

29%

similar number of PCA dimensions
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Matching Attack - Results



Matching Attack - Results

<80% 
<100 miRNAs
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Varying number of 
participants in the DB

Varying number of 
miRNAs in the DB



success rate remains more or 
less constant in the first year
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Matching Attack - Results



Matching AttackIdentification Attack

76%

28%

90%

48%
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Common belief: no privacy threats from miRNAs, 
because of temporal variability

belief is unjustified

success as high as 90% for 

blood-based samples

31
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Countermeasures
1. Hiding non-relevant miRNA expressions

• Suitable especially for diagnosis 

• Relevance determined by the p-values of miRNA expression in disease-association tests 

• Downside: correlations between miRNAs 

2. Probabilistically sanitizing the miRNA expression profiles
• Suitable for both biomedical research and diagnosis 

• Noise added in a fully distributed and differentially private manner  
=> providing epigeno-indistinguishability 

• Noise drawn according to the multivariate Laplacian mechanism
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Privacy-Utility Trade-Off
• You can rarely get both 100% privacy and 100% utility 

• Privacy: Unlinkability, with blood-based athletes miRNA 
expression dataset 

• Utility: Accuracy in classifying patients between cases 
(carrying a disease) and controls, using a support vector 
machine (SVM) classifier 

• New dataset for evaluating utility: >1000 patients, 19 
diseases, 1 single time point, 446 expressed miRNAs
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Hiding MicroRNAs
Multiple sclerosis: 
SVM classifier’s top  
accuracy = 0.992; 

with 40 miRNAs 
(baseline utility)

(a) (b) (c)

(d) (e) (f)

Figure 5: Evolution of privacy and utility (classifier accuracy) w.r.t. the number of revealed miRNAs for the following
diseases: (a) Pancreatitis, (b) Glioma, (c) Multiple sclerosis, (d) Tumor of stomach, (e) Melanoma, (f) Renal cancer.

In particular, for glioma, we can decrease the linka-
bility attack’s success and thus improve the privacy by
80.8% when using 4 miRNAs, while reducing the clas-
sification accuracy by only 1.1%. Similarly for multiple
sclerosis, 7 miRNAs provide an increase in privacy of
53.8%, while the decrease in accuracy only amounts to
0.9%. For renal cancer and 10 miRNAs, we are able to
achieve an improvement in privacy of 69.2% and a de-
crease of accuracy of only 1.7%. There are only two
diseases for which it is very difficult to have both unlink-
ability and very high utility: melanoma and pancreati-
tis. For melanoma, we notice that the matching attack’s
success has a fast increase with very few miRNAs, and
already exceeds 50% starting with only 7 miRNAs. For
pancreatitis, the SVM’s accuracy is relatively low (com-
pared to the maximum) for the first 20 miRNAs. Thus
for both diseases, either privacy or utility would have to
be slightly sacrificed for the other.

MiRNA co-expression. Like between variants in the
genome, there exist correlations between miRNA expres-
sions: around 40% of miRNAs are not independently ex-
pressed [7]. This means that the adversary, by knowing
these correlations, could increase his knowledge about
the non-disclosed miRNA expressions. In order to eval-
uate the importance of such correlations, we first com-

pute the Pearson’s correlation coefficients, and their cor-
responding p-values, in all 99,235 pairs of our 446 ex-
pressed miRNAs. Filtering out all correlations with p-
values greater than 0.001 (after Bonferroni correction for
multiple correlations’ testing) or correlation coefficient
smaller than 0.5 leaves us with 47% of miRNAs not in-
dependently expressed. Figure 6 shows the updates of
the linkability attack’s success by taking into account
all significant correlations as defined above. In our ex-
periments, we take a quite conservative approach: We
assume that the adversary can perfectly infer the miR-
NAs correlated with those that are gradually disclosed.
The dotted curve provides an upperbound estimate on
the success rate. A tighter bound could be derived by
knowing more precisely the probabilistic dependencies
between miRNAs. This is left for future work.

For Fig. 6, we make use of the three diseases of Fig-
ure 5 that gave best trade-off between privacy and util-
ity, i.e., glioma, multiple sclerosis and renal cancer. We
observe that the success rate knowing miRNAs corre-
lated with disclosed miRNAs is much higher than with-
out them, except for the very first miRNAs in Fig. 6(c).
It shows that the most significant miRNAs for the SVM
classification are co-expressed with others, which penal-
izes privacy significantly. We make use of the best sub-
sets of miRNAs found above without correlations, con-

10

Best trade-off:
1% utility decrease; 

50% privacy increase; 
with 7 miRNAs
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Hiding MicroRNAs

(a) (b) (c)

(d) (e) (f)

Figure 5: Evolution of privacy and utility (classifier accuracy) w.r.t. the number of revealed miRNAs for the following
diseases: (a) Pancreatitis, (b) Glioma, (c) Multiple sclerosis, (d) Tumor of stomach, (e) Melanoma, (f) Renal cancer.

In particular, for glioma, we can decrease the linka-
bility attack’s success and thus improve the privacy by
80.8% when using 4 miRNAs, while reducing the clas-
sification accuracy by only 1.1%. Similarly for multiple
sclerosis, 7 miRNAs provide an increase in privacy of
53.8%, while the decrease in accuracy only amounts to
0.9%. For renal cancer and 10 miRNAs, we are able to
achieve an improvement in privacy of 69.2% and a de-
crease of accuracy of only 1.7%. There are only two
diseases for which it is very difficult to have both unlink-
ability and very high utility: melanoma and pancreati-
tis. For melanoma, we notice that the matching attack’s
success has a fast increase with very few miRNAs, and
already exceeds 50% starting with only 7 miRNAs. For
pancreatitis, the SVM’s accuracy is relatively low (com-
pared to the maximum) for the first 20 miRNAs. Thus
for both diseases, either privacy or utility would have to
be slightly sacrificed for the other.

MiRNA co-expression. Like between variants in the
genome, there exist correlations between miRNA expres-
sions: around 40% of miRNAs are not independently ex-
pressed [7]. This means that the adversary, by knowing
these correlations, could increase his knowledge about
the non-disclosed miRNA expressions. In order to eval-
uate the importance of such correlations, we first com-

pute the Pearson’s correlation coefficients, and their cor-
responding p-values, in all 99,235 pairs of our 446 ex-
pressed miRNAs. Filtering out all correlations with p-
values greater than 0.001 (after Bonferroni correction for
multiple correlations’ testing) or correlation coefficient
smaller than 0.5 leaves us with 47% of miRNAs not in-
dependently expressed. Figure 6 shows the updates of
the linkability attack’s success by taking into account
all significant correlations as defined above. In our ex-
periments, we take a quite conservative approach: We
assume that the adversary can perfectly infer the miR-
NAs correlated with those that are gradually disclosed.
The dotted curve provides an upperbound estimate on
the success rate. A tighter bound could be derived by
knowing more precisely the probabilistic dependencies
between miRNAs. This is left for future work.

For Fig. 6, we make use of the three diseases of Fig-
ure 5 that gave best trade-off between privacy and util-
ity, i.e., glioma, multiple sclerosis and renal cancer. We
observe that the success rate knowing miRNAs corre-
lated with disclosed miRNAs is much higher than with-
out them, except for the very first miRNAs in Fig. 6(c).
It shows that the most significant miRNAs for the SVM
classification are co-expressed with others, which penal-
izes privacy significantly. We make use of the best sub-
sets of miRNAs found above without correlations, con-

10

Glioma: 
SVM classifier’s top  
accuracy = 0.927; 

with 19 miRNAs 
(baseline utility)

Best trade-off:
1% utility decrease; 

80% privacy increase; 
with 4 miRNAs
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MiRNA Co-Expression

(a) (b) (c)

Figure 6: Correlations between miRNAs. Evolution of privacy and utility, when miRNAs correlated with the re-
vealed miRNAs are taken into account for the attack. This provides an upperbound on the best linkability of miRNA
expression profiles, i.e., worst-case privacy level. (a) Glioma, (b) Multiple sclerosis, (c) Renal cancer.

taining 4 miRNAs for glioma, 7 for multiple sclerosis,
and 10 for renal cancer, and evaluate the new privacy lev-
els when miRNA correlations are taken into account. For
glioma, instead of improving unlinkability by 80.8%, the
4 miRNAs and their correlated miRNAs yields an im-
provement in privacy of 34.6%. For renal cancers, the
privacy enhancement drops from 69.2% to 38.5% and,
for multiple sclerosis, knowing 7 miRNAs and their co-
expressed miRNAs yield an attack’s success rate almost
equal to the highest rate with the full set of miRNAs.
However, we can find new, better trade-offs: e.g., dis-
closing 5 miRNAs for multiple sclerosis still provides the
same high SVM accuracy (decrease of 0.9% compared to
the baseline) while reducing the attack’s success by 23%.

6.3 Noise Mechanism
As we have noticed in the first protection mechanism,
it is possible to hide the vast majority of miRNAs
while retaining a fair level of prediction accuracy. This
is typically very useful in the clinical setting where
medical practitioners already know the miRNAs to test
for predicting a specific disease. However, such a
privacy-preserving mechanism could dramatically jeop-
ardize miRNA utility for biomedical research. Indeed, as
we have seen in our previous experiments, the majority
of miRNAs need to be masked in order to gain a signifi-
cant amount of unlinkability, which is not possible if re-
searchers want to test for associations between miRNAs
and diseases. Therefore, we additionally present and
study a countermeasure where contributors of miRNA
expressions directly apply random noise to their vec-
tors of expression levels before providing them to the re-
search community (possibly online), in a fully distributed
manner (i.e., independently of other contributors).

The idea behind adding noise to the raw expression
data is to provide indistinguishability between different

expression vectors and consequently reduce the track-
ing capabilities of the adversary. Following the gener-
alized notion of differential privacy [15] previously ap-
plied to location privacy [10], we state that a mechanism
K achieves epigeno-indistinguishability if and only if for
all m-miRNA expression vectors r1, r2,

Pr(K(r1) 2 S ) exp(ed2(r1,r2))⇥Pr(K(r2) 2 S ),

where S is any subset of the set of possible responses
and d2(·, ·) denotes the Euclidean distance. In the follow-
ing, we assume the set of possible responses lies in the
same m-dimensional real-valued space Rm as the set of
original expression vectors. Before defining our mecha-
nism K(·) for achieving epigeno-indistinguishability, let
us first give some intuition about the mechanism. The
noise mechanism is such that the probability of report-
ing a noisy expression vector K(r) differs by at most a
factor exp(ed2(r1,r2)) when the actual, non-obfuscated
miRNA expression vectors are r1 and r2. This can be
achieved by relying on the multivariate Laplacian mech-
anism that adds noise x according to the following prob-
ability density function g(x) = 1

a e�ekxk2 , where a is a
normalization factor ensuring that the integral over all
x 2 Rm equals one.

Sampling noise from the distribution g(x) can be car-
ried out efficiently by generalizing the the method used
for the planar Laplacian mechanism in [10]. First, we
sample the magnitude kxk2 of the noise from a gamma
distribution with shape m and scale 1/e . Second, we ran-
domly generate the direction x̂ = x/kxk2 of the noise by
uniformly sampling points on the surface Sm�1 of a hy-
persphere [36]. To do so, we can generate m indepen-
dent Gaussian random variables y1, y2, ..., ym, and let
ŷi = yi/

q
y2

1 + . . .+ y2
m for i = 1, ...,m. Then the distri-

bution of the vector ŷ = (ŷ1, ..., ŷm) is uniform over the
surface Sm�1, and thus we can set the direction x̂ := ŷ.

11

Assuming the adversary  
infers perfectly the  

miRNAs correlated with  
those released by the  

hiding mechanism, 
and uses them for  

his matching attack
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Probabilistic Sanitization
• Providing ℇ-epigeno-indistinguishability to the miRNA 

expression profiles 
 

• Achieved by adding multivariate Laplacian noise to the 
original miRNA expression vectors (of dimension m) 

• First, sample the magnitude of the noise from a Gamma distribution 
with shape m and scale 1/ℇ 

• Second, generate the direction by randomly sampling points on the 
surface (of dimension m-1) of a hypersphere 

(a) (b) (c)

Figure 6: Correlations between miRNAs. Evolution of privacy and utility, when miRNAs correlated with the re-
vealed miRNAs are taken into account for the attack. This provides an upperbound on the best linkability of miRNA
expression profiles, i.e., worst-case privacy level. (a) Glioma, (b) Multiple sclerosis, (c) Renal cancer.

taining 4 miRNAs for glioma, 7 for multiple sclerosis,
and 10 for renal cancer, and evaluate the new privacy lev-
els when miRNA correlations are taken into account. For
glioma, instead of improving unlinkability by 80.8%, the
4 miRNAs and their correlated miRNAs yields an im-
provement in privacy of 34.6%. For renal cancers, the
privacy enhancement drops from 69.2% to 38.5% and,
for multiple sclerosis, knowing 7 miRNAs and their co-
expressed miRNAs yield an attack’s success rate almost
equal to the highest rate with the full set of miRNAs.
However, we can find new, better trade-offs: e.g., dis-
closing 5 miRNAs for multiple sclerosis still provides the
same high SVM accuracy (decrease of 0.9% compared to
the baseline) while reducing the attack’s success by 23%.

6.3 Noise Mechanism
As we have noticed in the first protection mechanism,
it is possible to hide the vast majority of miRNAs
while retaining a fair level of prediction accuracy. This
is typically very useful in the clinical setting where
medical practitioners already know the miRNAs to test
for predicting a specific disease. However, such a
privacy-preserving mechanism could dramatically jeop-
ardize miRNA utility for biomedical research. Indeed, as
we have seen in our previous experiments, the majority
of miRNAs need to be masked in order to gain a signifi-
cant amount of unlinkability, which is not possible if re-
searchers want to test for associations between miRNAs
and diseases. Therefore, we additionally present and
study a countermeasure where contributors of miRNA
expressions directly apply random noise to their vec-
tors of expression levels before providing them to the re-
search community (possibly online), in a fully distributed
manner (i.e., independently of other contributors).

The idea behind adding noise to the raw expression
data is to provide indistinguishability between different

expression vectors and consequently reduce the track-
ing capabilities of the adversary. Following the gener-
alized notion of differential privacy [15] previously ap-
plied to location privacy [10], we state that a mechanism
K achieves epigeno-indistinguishability if and only if for
all m-miRNA expression vectors r1, r2,

Pr(K(r1) 2 S ) exp(ed2(r1,r2))⇥Pr(K(r2) 2 S ),

where S is any subset of the set of possible responses
and d2(·, ·) denotes the Euclidean distance. In the follow-
ing, we assume the set of possible responses lies in the
same m-dimensional real-valued space Rm as the set of
original expression vectors. Before defining our mecha-
nism K(·) for achieving epigeno-indistinguishability, let
us first give some intuition about the mechanism. The
noise mechanism is such that the probability of report-
ing a noisy expression vector K(r) differs by at most a
factor exp(ed2(r1,r2)) when the actual, non-obfuscated
miRNA expression vectors are r1 and r2. This can be
achieved by relying on the multivariate Laplacian mech-
anism that adds noise x according to the following prob-
ability density function g(x) = 1

a e�ekxk2 , where a is a
normalization factor ensuring that the integral over all
x 2 Rm equals one.

Sampling noise from the distribution g(x) can be car-
ried out efficiently by generalizing the the method used
for the planar Laplacian mechanism in [10]. First, we
sample the magnitude kxk2 of the noise from a gamma
distribution with shape m and scale 1/e . Second, we ran-
domly generate the direction x̂ = x/kxk2 of the noise by
uniformly sampling points on the surface Sm�1 of a hy-
persphere [36]. To do so, we can generate m indepen-
dent Gaussian random variables y1, y2, ..., ym, and let
ŷi = yi/

q
y2

1 + . . .+ y2
m for i = 1, ...,m. Then the distri-

bution of the vector ŷ = (ŷ1, ..., ŷm) is uniform over the
surface Sm�1, and thus we can set the direction x̂ := ŷ.

11
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Probabilistic Sanitization

(a) (b) (c)

(d) (e) (f)

Figure 7: Evolution of privacy and utility (classifier accuracy) w.r.t. the noise (tuned by e) added to the individual
miRNA expression profiles, for the following diseases: (a) Pancreatitis, (b) Glioma, (c) Multiple sclerosis, (d) Tumor
of stomach, (e) Melanoma, (f) Renal cancer.

of 69.2% and a decrease in accuracy of only 1.7% when
using the hiding technique. For the majority of diseases,
however, it is clearly the noise mechanism that provides
much higher utility. For example, for lung cancer, an
increase in privacy of at least 70% is achievable with a
decrease in accuracy of only 0.2% with the noise mech-
anism, while the hiding technique yields a decrease in
accuracy of 11.2%.

In summary, we find that the noise mecha-
nism presented in Section 6.3, providing epigeno-
indistinguishability, is able to achieve a better privacy-
utility trade-off than the hiding mechanism for the vast
majority of studied diseases (17 out of 19). We have also
shown in Section 6.2 that the privacy improvement with
the hiding mechanisms could actually be too optimistic
due to the correlations existing between miRNAs. This
is another argument to favor the noise mechanism rather
than the hiding technique. Moreover, the p-values used
to order the miRNAs in the hiding mechanism actually
require that, at some point in time, some entity, gets ac-
cess to the full set of miRNAs of a significant number of
individuals in order to measure these p-values. The noise
mechanism is fully distributed and does not need to rely
on a trusted entity at any point in time. Finally, it allows
for more flexibility as it enables, e.g., the biomedical re-

search community to access all miRNA expression levels
of contributors.

7 Related Work

We start with the literature highlighting new privacy is-
sues stemming from various types of biomedical data.
Schadt et al. have shown that RNA expression data could
be used to accurately predict genotypes [48]. The au-
thors present a Bayesian framework that relies on the
association existing between expression levels of thou-
sands of genes and genomic variations called expression
quantitative trait loci (eQTLs). In the same vein, Philib-
ert et al. demonstrate how methylation array data can
be used to construct individually identifying genetic pro-
files, and to infer substance-use histories, such as alcohol
or smoking [45]. Dyke et al. also study privacy risks re-
lated to methylation data, and discuss various methods to
balance data open-access and (epi)genomic privacy [18].
Franzosa et al. evaluate how different samples of hu-
man microbiomes can be linked over time [23]. Their
results show that more than 80% of individuals can still
be uniquely identified one year later. Fierer et al. had al-
ready provided some evidence on the feasibility of link-
ing skin bacterial communities back in 2010, but with

13

Multiple sclerosis: 
SVM classifier’s top  
accuracy = 0.992; 

with 40 miRNAs 
(baseline utility)

Best trade-off:
0.65% utility decrease; 
63% privacy increase; 

at ℇ=0.025
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Probabilistic Sanitization(a) (b) (c)

(d) (e) (f)

Figure 7: Evolution of privacy and utility (classifier accuracy) w.r.t. the noise (tuned by e) added to the individual
miRNA expression profiles, for the following diseases: (a) Pancreatitis, (b) Glioma, (c) Multiple sclerosis, (d) Tumor
of stomach, (e) Melanoma, (f) Renal cancer.

of 69.2% and a decrease in accuracy of only 1.7% when
using the hiding technique. For the majority of diseases,
however, it is clearly the noise mechanism that provides
much higher utility. For example, for lung cancer, an
increase in privacy of at least 70% is achievable with a
decrease in accuracy of only 0.2% with the noise mech-
anism, while the hiding technique yields a decrease in
accuracy of 11.2%.

In summary, we find that the noise mecha-
nism presented in Section 6.3, providing epigeno-
indistinguishability, is able to achieve a better privacy-
utility trade-off than the hiding mechanism for the vast
majority of studied diseases (17 out of 19). We have also
shown in Section 6.2 that the privacy improvement with
the hiding mechanisms could actually be too optimistic
due to the correlations existing between miRNAs. This
is another argument to favor the noise mechanism rather
than the hiding technique. Moreover, the p-values used
to order the miRNAs in the hiding mechanism actually
require that, at some point in time, some entity, gets ac-
cess to the full set of miRNAs of a significant number of
individuals in order to measure these p-values. The noise
mechanism is fully distributed and does not need to rely
on a trusted entity at any point in time. Finally, it allows
for more flexibility as it enables, e.g., the biomedical re-

search community to access all miRNA expression levels
of contributors.

7 Related Work

We start with the literature highlighting new privacy is-
sues stemming from various types of biomedical data.
Schadt et al. have shown that RNA expression data could
be used to accurately predict genotypes [48]. The au-
thors present a Bayesian framework that relies on the
association existing between expression levels of thou-
sands of genes and genomic variations called expression
quantitative trait loci (eQTLs). In the same vein, Philib-
ert et al. demonstrate how methylation array data can
be used to construct individually identifying genetic pro-
files, and to infer substance-use histories, such as alcohol
or smoking [45]. Dyke et al. also study privacy risks re-
lated to methylation data, and discuss various methods to
balance data open-access and (epi)genomic privacy [18].
Franzosa et al. evaluate how different samples of hu-
man microbiomes can be linked over time [23]. Their
results show that more than 80% of individuals can still
be uniquely identified one year later. Fierer et al. had al-
ready provided some evidence on the feasibility of link-
ing skin bacterial communities back in 2010, but with

13

Tumor of stomach: 
SVM classifier’s top  
accuracy = 0.969; 
with 160 miRNAs 
(baseline utility)

Best trade-off:
0.2% utility decrease; 
70% privacy increase; 

at ℇ=0.01
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Mechanisms Comparison

• Probabilistically sanitizing with Laplacian mechanism 
provides better privacy-utility trade-off than hiding, for 17 
out of 19 diseases 

• Probabilistically sanitizing enables to decrease 
linkability of miRNA expressions by > 50% for almost no 
loss of accuracy (< 1%) for the majority of diseases 

• Hiding enables this decrease of linkability for the same 
loss of accuracy for only 2 out of 19 diseases
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Conclusion

• There exist privacy threats inherent to epigenetic data 

• Blood-based miRNA expression profiles are easier to link 
than plasma-based profiles 

• Adding noise to miRNA profiles provides better utility-
privacy trade-off than masking them 

• Adding noise enables to double privacy provision at 
almost no utility cost, for most diseases
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Future Directions
• Studying in more detail miRNA data properties 

• Supervised learning approach 

• Cryptographic mechanisms to protect miRNA expressions 

• Inferring membership in miRNA-disease association studies 

• Studying privacy risks with other types of data at the different 
human OSI layers


