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Abstract. Recent smartphones incorporate embedded GPS devices that
enable users to obtain geographic information about their surroundings
by providing a location-based service (LBS) with their current coordi-
nates. However, LBS providers collect a significant amount of data from
mobile users and could be tempted to misuse it, by compromising a cus-
tomer’s location privacy (her ability to control the information about
her past and present location). Many solutions to mitigate this privacy
threat focus on changing both the architecture of location-based systems
and the business models of LBS providers. MobiCrowd does not intro-
duce changes to the existing business practices of LBS providers, rather
it requires mobile devices to communicate wirelessly in a peer-to-peer
fashion. To lessen the privacy loss, users seeking geographic informa-
tion try to obtain this data by querying neighboring nodes, instead of
connecting to the LBS. However, such a solution will only function if
users are willing to share regional data obtained from the LBS provider.
We model this collaborative location-data sharing problem with rational
agents following threshold strategies. Initially, we study agent coopera-
tion by using pure game theory and then by combining game theory with
an epidemic model that is enhanced to support threshold strategies to
address a complex multi-agent scenario. From our game-theoretic anal-
ysis, we derive cooperative and non-cooperative Nash equilibria and the
optimal threshold that maximizes agents’ expected utility.

1 Introduction

Today’s smartphones are often equipped with GPS devices that enable their
users to obtain contextual information about their surroundings, such as the
location of the nearest supermarket, without needing to ask directions from other
people. To obtain such contextual information, users normally query a loca-
tion-based service (LBS), such as Google Maps (http://maps.google.com)
that, given a current position, can provide detailed information about points-of-
interest in the region and stepwise instructions to reach a particular destination.
The downside of using an LBS system is the possible loss of location privacy
[5][10][12], defined as the ability for a user to control how, where, and when
information about her current and past location is used and by whom [1][4].

MobiCrowd [14] mitigates the loss in location privacy by assuming users carry
location-aware wireless devices capable of peer-to-peer communication, through
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which they can share regional data and, in this way, reduce the fraction of queries
dispatched to the LBS. MobiCrowd devices are equipped with a mobile proxy
that stores the results of LBS queries in a buffer. When a user issues a new query,
the mobile proxy scans the buffer for the information. If the query cannot be
answered by the local cache, it is broadcast to peer devices within range. Should
these peers be unable or unwilling to answer the query, the device finally prompts
the LBS server. The main advantage of this new scheme is that it helps protect
users’ location privacy and requires no changes to the current business practices
of LBS providers and only minimal changes to the architecture of conventional
location-based services.

Our goal is to learn whether the overall level of cooperation amongst users is
sufficiently high for a solution such as MobiCrowd to work. For this purpose, we
model the problem by using game theory [2][13]. This discipline provides a rich
set of analytical tools through which researchers study the interaction between
agents as decision-makers, notably in the context of cooperation in wireless com-
munications [7] and in location privacy [1][4][8][9][11]. Combining game theory
with epidemic models, such as the susceptible-infected-removed (SIR) model [6],
is a practical approach to studying strategic behavior for large populations of
agents. This method is used in [3] to explore why rational individuals might pre-
clude the eradication of a vaccine-preventable disease by weighing the risks of
vaccination and infection; and in [15] to study how the investment in security by
self-interested agents affects the propagation of a computer network infection.

In our game-theoretic model, we represent users as agents who follow threshold
strategies. We assume that users are rational, meaning that they have knowl-
edge of their actions, reason about uncertainty, have clear preferences expressed
through a utility function, and choose actions in their own self-interest by max-
imizing this utility function [13]. Using this model, we define two infinitely re-
peated games of imperfect information. In the first game, we study an elemen-
tary, two-agent interaction and use pure game theory to derive Nash and Pareto
optimal equilibria. In the second, we analyze a complex, multi-agent interaction
by using a modified version of the epidemic model in [14] to support threshold
strategies and derive the optimal threshold that maximizes agents’ payoffs.

2 System Model

In this section we define a game-theoretic framework from which we scrutinize
the MobiCrowd architecture. Consider an agent i confined to a single region. As
it interacts with other agents in the region and the LBS, it switches between
three distinct roles: seeker (K), informed (I), and removed (R) [14]. Seekers try
to obtain regional data by querying other peers or, ultimately, the LBS server.
Informed agents have data on the region and accept to spread this information
according to a threshold strategy; they become removed once the data on their
mobile proxy expires. Finally, removed agents are not interested in obtaining
regional data but can become information seekers later in the game. The set
of roles that each agent may have is defined as follows: ΠR = {K, I, R}. We
illustrate the interaction between the three agent roles in Figure 1.
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Fig. 1. Operating principle of MobiCrowd. Seekers attempt to obtain data on this re-
gion through informed agents or the LBS using wireless communication links. Removed
agents do not have any regional data and do not want to obtain such information, ab-
staining from any interaction with either seekers or informed agents.

As agent i communicates with its peers, it records (i) the number of times it
received data from other agents, rci(t), and (ii) the number of times it answered
queries from its peers, tri(t), up to and excluding time t, where rci(0) = tri(0) =
0. The goal is to define an agent’s cumulative cooperation effort: the total
number of times an agent receives help in excess of the amount of times it shared
data with a peer. An agent uses this value to decide whether to cooperate or
defect when receiving queries from its peers. Let φi(t) denote the cumulative
cooperation effort of agent i, defined as follows:

φi(t) = rci(t) − tri(t) . (1)

Further, let the set Πφ equal the range of the cumulative cooperation effort: Πφ =
{φmin, . . . , 0, . . . , φmax}, where φmin and φmax are, respectively, the minimum and
maximum bounds for φi(t).

There are two variables that define the state of an agent in the system: (i) its
current role and (ii) its cumulative cooperation effort. Hence, by combining these
two variables, we can define the full set of agent states. Let S denote the set of
agent states, computed as the cartesian product of ΠR and Πφ: S = ΠR×Πφ. We
adopt the following notation to refer to each state: Xφ, where X represents one of
the three possible roles and φ is the cumulative cooperation effort. Additionally,
we express the fraction of agents in each state at time t as Xφ(t).

An agent i decides to share regional facts with seekers according to a thresh-
old strategy si(t). It cooperates with a seeker if (i) it is informed and (ii) its
cumulative cooperation effort, φi(t), is above a common threshold α that ex-
presses the amount of sharing agents accept to perform before expecting some
aid in return; lowering α improves an agent’s capacity to collaborate. If either
condition is false, the agent defects:

si(t) =
{

cooperate if φi(t) > α ∧ i ∈ Iφi(t) ,
defect otherwise . (2)
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As in [14], we assume that agents share a single kind of contextual information.
To consider multiple types of regional data, we can apply the same system model
to each type of data separately; hence, no loss of generality results from this
simplifying assumption.

In our work, we consider a payoff model that reflects the costs and benefits
experienced by MobiCrowd users as they interchange data with peers and con-
nect to the LBS. Consider a simple interaction between a seeker i, an informed
agent j, and the LBS. When i prompts j and j cooperates, i receives a benefit of
binf, expressing the agent’s information gain, and j incurs a communication cost
of ccom for sharing data. If j defects it receives no payoff and i must seek help
from the LBS, earning a lesser payoff of binf−csrv, where csrv denotes the privacy
loss implied when communicating with the location-based service. The utility of
agent i at time t is defined as the difference between the benefit obtained, bi(t),
and the cost incurred, ci(t), at time t:

ui(t) = bi(t) − ci(t) . (3)

According to the operating principle of MobiCrowd [14], users that seek geo-
graphic data query nearby informed peers to avoid the privacy threat posed
by the LBS; hence, we assume that the LBS privacy cost (csrv) exceeds the
peer-to-peer communication cost (ccom). As users ultimately endeavor to be-
come informed, we further assume that the benefit of acquiring data (binf) tops
the privacy and communication costs: 0 ≤ ccom < csrv < binf ≤ 1.

In infinitely repeated games, agents lack knowledge of the precise game dura-
tion, thus, they value present payoffs more than future rewards. To capture this
fact, we define the aggregate discounted reward of an agent for two distinct
cases: discrete time and continuous time games. In the discrete case, the payoff
of an agent i is observed at several discrete time instances or game stages and
the aggregate discounted reward is the sum of its payoff in the immediate stage
game, plus the sum of aggregate rewards discounted by a constant δ ∈]0, 1[.

Definition 1. Given an infinite sequence of payoffs ui(0), ui(1), . . . for agent i,
and a discount factor δ with 0 < δ < 1, the aggregate discounted reward of
i in a discrete time game is:

∑∞
t=0 δtui(t) =

∑∞
t=0 δt(bi(t) − ci(t)).

Additionally, we consider a continuous time game, in which case the aggregate
discounted reward is given by the integral of an agent’s payoff for the duration
of the game, discounted by a constant δ ∈]0, 1[.

Definition 2. Given the utility function ui(t) for agent i and a discount factor
δ with 0 < δ < 1, the aggregate discounted reward of i in a continuous time
game is:

∫ ∞
0 δtui(t) dt =

∫ ∞
0 δt (bi(t) − ci(t)) dt.

3 Two-Agent Game

We first model the problem as an infinitely repeated two-agent game of imperfect
information and we constrain both agents to a single map region. To avoid this
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Table 1. List of Symbols

Symbol Description

n size of the agent population
φi(t) cumulative cooperation effort of agent i
rci(t) number of times agent i received data up to and excluding time t
tri(t) number of times agent i shared data up to and excluding time t
si(t) pure strategy followed by agent i at time t
α threshold value used in si(t) to trigger cooperative and non-

-cooperative agent behavior
αopt common threshold value that maximizes agents’ expected payoff
ui(t) agent i’s payoff at time t
bi(t) agent i’s benefit (if any) at time t
ci(t) agent i’s cost (if any) at time t
binf payoff for obtaining regional data from a peer or the LBS
ccom communication cost of sharing regional data with a peer
csrv privacy cost incurred when calling the LBS server
δ discount factor used to calculate agents’ aggregate payoffs
Ui agent i’s expected aggregate discounted payoff

Û estimate of an agent’s expected aggregate discounted payoff
Utotal total discounted payoff of the game

Ûtotal estimate of the game’s total discounted payoff
rctotal total rate at which seekers receive data from informed peers
r̂ctotal estimate of the total rate at which seekers receive data from

informed peers
trtotal total rate at which informed agents share data with seekers

t̂rtotal estimate of the total rate at which informed agents share data
with seekers

ŝvtotal estimate of the total rate at which seekers receive data from the LBS
S set of game states
Πφ range of the cumulative cooperation effort: {φmin, . . . , 0, . . . , φmax}
ΠR set of possible agent roles: {K, I,R}
Kφ an agent i is in this game state at time t if it wants to obtain

regional data and φi(t) = φ
Kφ(t) fraction of agents in state Kφ at time t
Iφ an agent i is in this game state at time t if it has regional data

and φi(t) = φ
Iφ(t) fraction of agents in state Iφ at time t
Rφ an agent i is in this game state at time t if it has no regional data,

does not wish to obtain this data, and φi(t) = φ
Rφ(t) fraction of agents in state Rφ at time t
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privacy threat, agents 1 and 2 want to obtain information about this region by
querying their partner, instead of calling the LBS. In the beginning, no agent has
the desired data, consequently one agent must call the LBS. The data retrieved
from the LBS expires after one game epoch, at which time it is deleted from the
agents’ mobile proxy. At the start of each stage, exactly one agent — chosen
uniformly at random — will be responsible for querying the server. Upon query-
ing the LBS, an agent i becomes informed and follows a threshold strategy to
decide whether to cooperate and share data with its peer j or defect by refusing
to share, according to the strategy function si(t) (2).

When agent i cooperates at time t, i.e. si(t) = cooperate, i incurs a commu-
nication cost of ccom and j gains a benefit of binf. If i defects, si(t) = defect,
it obtains no payoff and j must call the LBS, earning binf − csrv. The utility
function, shared by both agents, is defined succinctly as follows:

ui(t) =

⎧⎪⎪⎨
⎪⎪⎩

binf if sj(t) = cooperate ,
binf − csrv if sj(t) = defect ,
−ccom if si(t) = cooperate ,
0 if si(t) = defect .

(4)

Agent i uses the same utility and strategy functions as its peer j, knows
the action chosen by j in the current game stage, but it does not record j’s
past moves. The ability to memorize the history of actions played by an agent is
unrealistic due to the memory constraints of existing smartphone devices. Hence,
i is unable to compute j’s cumulative cooperation effort for all game stages. For
this reason, agents i and j have imperfect information about the game state.

4 Two-Agent Game Analysis

The goal of this section is to determine under which conditions the threshold
strategy introduced previously will yield a cooperative equilibrium. Let Ui denote
the expected aggregate discounted reward for agent i. Agents acting rationally
will only cooperate if the expected discounted benefit is greater than the expected
discounted cost incurred, as defined next:

Ui =
∞∑

t=0

δt (bi(t) − ci(t)) > 0 . (5)

We now calculate the expected discounted aggregate reward, assuming that
agents are chosen randomly at each turn to query the LBS.

Lemma 1. If exactly one agent is chosen at each turn to query the LBS and
the probability of being chosen equals 1/2, then agent i’s expected aggregate dis-
counted reward, as a function of the threshold α, is given by

Ui(α) =

⎧⎪⎨
⎪⎩

1
1 − δ

· binf − ccom
2

if α ≤ −1 ,
1

1 − δ
· binf − csrv

2
otherwise .

(6)
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Proof. The probability that an agent i is chosen to query the LBS is 1/2. If agent
i is chosen to query the LBS in turn k, it will cooperate with the second agent
if φi(k) > α, incurring a cost of ccom, and defect otherwise, receiving no payoff.
If agent j is selected to query the LBS in turn k, it will cooperate with agent i
if φj(k) > α, resulting in a benefit of binf for agent i, and defect if φj(k) ≤ α,
causing agent i to call the LBS server, yielding a lesser benefit of binf − csrv. Let
Ui(α) denote the expected aggregate discounted reward for agent i as a function
of the threshold value α. Then Ui(α) can be calculated as follows:

Ui(α) =
1
2

∞∑
t=0

δt
[−ccom · 1{φi(t)>α} + 0 · 1{φi(t)≤α}

]
+

δt
[
binf · 1{φj(t)>α} + (binf − csrv) · 1{φj(t)≤α}

]
, (7)

where 1predicate is an indicator function yielding 1 each time the predicate is true
and zero when the predicate is false.

As we do not know the value of φi(t) for the duration of the game, we must
calculate the average cumulative cooperation effort (φ) based on the average
number of times an agent receives data (rc) and shares data (tr), as follows:

φ = rc − tr . (8)

As the two agents have equal probabilities of being chosen to query the LBS at
each turn, we expect that each agent is chosen for m/2 game stages, where m
is the length of the game. Additionally, agent i will share data with its peer j
with an estimated probability of: Pr{φ > α}. Hence, rc and tr are given by

rc = (m/2) · Pr{φ > α} , (9)

tr = (m/2) · Pr{φ > α} , (10)

implying that the average cumulative cooperation effort is zero: φ = 0. Using
the previous results, we can now estimate the value of Ui(α) as follows:

Ui(α) =
1
2

∞∑
t=0

δt
[
(binf − ccom) · 1{α<0} + (binf − csrv) · 1{α≥0}

]
=

=

⎧⎪⎨
⎪⎩

1
1 − δ

· binf − ccom

2
if α ≤ −1 ,

1
1 − δ

· binf − csrv

2
otherwise .

��
In the following theorem we characterize the possible equilibria resulting from

the game described in Lemma 1.

Theorem 1. The game described in Lemma 1 has two Nash equilibria: (i) both
agents choose a threshold α = −1, ensuring the minimal level of cooperation
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necessary to achieve the maximal payoff and (ii) both agents opt for a threshold
of α ≥ 0, thus defecting throughout the game. Further, the choice of α = −1
results in a Pareto optimal equilibrium.

Proof. Agents i and j can opt for a threshold of α > −1 or, equivalently,
α ≥ 0, leading to a non-cooperative Nash equilibrium. As the function φi(t)
is initially zero, it will never be greater than zero, and agents will never cooper-
ate: ∀i,tφi(t) 	> 0. If agent j independently chooses a threshold α′ smaller than
zero, it will cooperate, at most, −α′ times, incurring a cost proportional to ccom.

The choice of α = −1 is also a Nash equilibrium as it is the maximal threshold
that still allows mutual cooperation between both agents, minimizes the number
of times they share data, and maximizes their expected discounted payoffs:

maxUi,j(α) =
1

1 − δ
· binf − ccom

2
for α ≤ −1. (11)

If agent j independently decreases its threshold to α′ < α, it will increase its
capacity to cooperate with i, potentially incurring a higher sharing cost, propor-
tional to ccom, and consequently obtaining a lower payoff than (11). Assuming
j chooses, instead, α′ ≥ 0, it will always defect and agent i will cooperate, at
most, once with j, at which time j earns binf and i has a cost of ccom. As this
event occurs, at most, once for an infinitely repeated game, we do not consider
this an advantage for player j. Instead, we assume that the game outcome is
equivalent to when both agents defect throughout the game.

We now compare the two possible choices of threshold values: α = −1 and
α ≥ 0. Clearly, Ui(−1) > Ui(α′), for α′ ≥ 0 and 0 ≤ ccom < csrv < binf ≤ 1.
Hence, the strategical choice of α = −1 Pareto dominates the choice α ≥ 0.
As there is no other strategy that Pareto dominates the choice of α = −1, we
conclude that this choice by both agents is Pareto optimal. ��

5 Multiple-agent Game

In an effort to match more closely a real interaction between MobiCrowd devices,
we now consider a game with multiple agents and represent time as a continuous
measure. To analyze the behavior of a large population of agents (n >> 2), we
alter the epidemic model in [14] to support threshold strategies and we define
the rate at which agents switch between states, as shown in Figure 2. The letters
K, I, and R in the state-diagram stand for the three agent roles, seeker (K),
informed (I), and removed (R) and the integer suffix next to each letter denotes
the cumulative cooperation effort. The Cartesian product of the set of roles and
the range of the cumulative cooperation effort generates the full set of agent
states: S = ΠR × Πφ.

Assume that only seekers are present at the start of the game; so all agents are
at state K0 (the cumulative cooperation effort is initially zero). With no informed
agents in the vicinity, seekers must acquire regional data via the LBS, following
transition K0 → I0, in which case their cumulative cooperation effort remains
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constant at zero. These newly informed agents can now cooperate with seekers
at state K0. A seeker receiving regional data through an informed peer improves
its cumulative cooperation effort by one and then jumps to a higher layer in
the state diagram. Whereas, informed agents sharing data suffer a decrement in
their cumulative cooperation effort and fall to a lower level in the state diagram.

An informed agent i with the minimum cumulative cooperation level (i.e. that
has reached the bottom level in the state chart) does not cooperate with seekers
as the condition to cooperate, φi(t) > φmin = α, no longer holds (2). To reach the
maximum cumulative cooperation effort, an agent i must act solely as a recipient
of information and all its (n − 1) peers act as providers of information; agent
i’s peers descend to the bottom layer of the diagram and reach the minimum
cumulative cooperation effort.

Theorem 2. The cumulative cooperation effort of an agent i, φi(t), has a max-
imum of φmax and minimum of φmin, where

φmax = (1 − n)α , (12)
φmin = α , (13)

for an n-agent game and a common threshold value of α.

In other words, there is an upper limit to the amount of cooperation an agent i is
forced to provide by following the threshold strategy si(t), which is proportional
to the number of agents n in the game and the threshold value α. If agent i’s
cooperation effort reaches the maximum value, φi(t) = φmax, i will cooperate,
at most, φmax − φmin = −nα times, for φi(t) = 0, i will cooperate, at most, −α
times, and if φi(t) = φmin, i will defect.

Proof. Consider an n-agent game and let G be the group of agents consisting
of all but agent p1. Hence, the cardinality of G is given by: |G| = n − 1. The
cumulative cooperation effort of all agents is initially equal to zero. Each time t
the regional data in p1’s cache expires, an agent p, satisfying {p ∈ G|φp(t) > α},
contacts the LBS server and shares the retrieved data with p1, upon p1’s request.
This benevolent sharing activity ceases at time t′ when all agents p ∈ G have a
cumulative cooperation effort of: φp(t′) = α. If there was an agent p∗ ∈ G such
that φp∗(t′) = α + 1 > α, then p∗ could share data with p1 once more before
defecting. Each agent in G can, thus, share at most −α data items with p1 before
defecting. Hence, p1’s cumulative cooperation effort reaches a maximum at time
t′, given by:

φp1(t
′) = |G|(−α) = (1 − n)α ,

and those of p ∈ G reach a minimum of

φp(t′) = α . ��
The arrows in the state chart denote the rates at which agents switch between
states, where rcon refers to the contact rate between game agents in a region,
1/rsrv is the average waiting time before contacting the LBS server, 1/rinf is the
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average information lifetime, and finally, rreq is the rate at which MobiCrowd
users request information. Here A(t) is proportional to the fraction of informed
agents with a cumulative cooperation effort above the minimum (φmin), i.e. the
pool of informed agents that can cooperate, and B(t) is proportional to the
fraction of seekers with a cumulative cooperation effort below the maximal value
(φmax), i.e. the group of seekers capable of querying informed peers. In Table 2
we define the payoffs associated with each state transition.

Table 2. Transition Rates and Payoffs

Transition Pre-condition Rate Utility

1) Kφ → Iφ+1 φ < φmax A(t) · Kφ(t) binf

2) Kφ → Iφ – rsrv · Kφ(t) binf − csrv

3) Iφ+1 → Iφ φ < φmax B(t) · Iφ+1(t) −ccom

4) Iφ → Rφ – rinf · Iφ(t) 0
5) Rφ → Kφ – rreq · Rφ(t) 0

where:

A(t) = rcon

φmax∑
l=φmin+1

Il(t) and B(t) = rcon

φmax−1∑
l=φmin

Kl(t) .

When a seeker successfully queries an informed agent, it becomes informed, im-
proves its cumulative cooperation effort by 1 and obtains a benefit of binf as
defined by Transition 1. Note that only informed agents with a cumulative coop-
eration effort greater than φmin (or α) will cooperate with seekers. By following
Transition 2, seekers can become informed by connecting to the LBS instead
of communicating with a peer. However, in this case, they receive a payoff of
just binf − csrv and their cumulative cooperation efforts remain constant. When
a seeker i reaches the highest cumulative cooperation effort, φi(t) = φmax, it
can only become informed through the LBS server, by following Transition 2,
as there is no other agent j available such that φj(t) > α (see proof of Theo-
rem 2). Each time informed agents share data with a seeker, their cumulative
cooperation effort drops by 1 unit and they incur a communication cost of ccom,
according to Transition 3. Finally, the remaining two transitions, 4 and 5, define
the rates at which agents switch from the informed to the removed state and
from the removed to the seeker state, respectively.

As we define the transition rates between agent states for the n-agent game,
we ensure that the total information shared is equal to the total amount of
information received by seekers. Even though agents are constantly updating
the regional data stored in their mobile proxies, this property must still hold
because each fresh data item shared by an informed agent must be received by a
seeker. This property implies that there is no loss of information during the data
sharing process between informed agents and seekers; we assume lost packets are
retransmitted. This concept is expressed formally in the following theorem.



Collaborative Location Privacy with Rational Users 173

Theorem 3. The total amount of information shared by informed agents must
equal the total amount of information received by seekers, assuming the infor-
mation sharing process incurs no loss of data.

Proof. The total rate at which seekers receive data from informed agents equals

rctotal(α, t) =
(1−n)α−1∑

φ=α

Kφ(t) · rcon

(
Iα+1(t) + . . . + I(1−n)α(t)

)
. (14)

A seeker agent i at state Kφmax cannot receive data from an informed agent
because state Kφmax is only reached when all other agents j have the lowest
possible cumulative cooperation effort, ∀jφj(t) = α, as explained in the proof
of Theorem 2, hence any informed agent j ∈ Iφmin following threshold strategy
sj(t) will defect.

Similarly, the total rate at which informed agents share data with seekers is
given by the following:

trtotal(α, t) =
(1−n)α∑
φ=α+1

Iφ(t) · rcon

(
Kα(t) + . . . + K(1−n)α−1(t)

)
. (15)

Expanding rctotal(α, t) gives

rctotal(α, t) = Kα(t) · rcon

(
Iα+1(t) + . . . + I(1−n)α(t)

)
+ . . .

+ K(1−n)α−1(t) · rcon

(
Iα+1(t) + . . . + I(1−n)α(t)

)
. (16)

By factorizing (16) in terms of Iφ(t), for α < φ ≤ (1 − n)α, we obtain

Iα+1(t) · rcon

(
Kα(t) + . . . + K(1−n)α−1(t)

)
+ . . .

+ I(1−n)α(t) · rcon

(
Kα(t) + . . . + K(1−n)α−1(t)

)
= trtotal(α, t) . (17)

As both rates are equal, rctotal(α, t) = trtotal(α, t), the total amount of informa-
tion shared must equal the total amount of information received:

∫ ∞

0

rctotal(α, t) dt =
∫ ∞

0

trtotal(α, t) dt . (18)

��
To calculate the total discounted game payoff, we map each transition to a utility
value (see Table 2). We assign the highest payoff of binf to transition Kφ → Iφ+1,
through which seekers acquire regional data from an informed peer. Seekers earn
a lesser payoff of binf − csrv per query when they acquire data from the LBS
using transition Kφ → Iφ due to the privacy loss incurred. Informed agents
suffer a penalty of ccom whenever they share data with seekers using transition
Iφ+1 → Iφ. By multiplying the transition rates and the transition utility values
we obtain the game’s payoff rate u(α, t) (see Appendix A). Applying the discount
factor δ to the payoff rate u(α, t) and integrating the result over the whole
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duration of the game gives the total game discounted reward; in other words,
the payoff accumulated by the whole agent population:

Utotal(α) =
∫ ∞

0

δtu(α, t) dt . (19)

For a finite population of agents n, the expected total discounted payoff of each
agent is calculated simply as

U(α) =
1
n
· Utotal(α) . (20)

6 Multiple-agent Game Analysis

The quantity of agents in each state is controlled by a system of non-linear
differential equations (see Appendix B), derived from the agent state-chart in
Figure 2. Ideally, the exact expressions for Kφ(t), Iφ(t), and Rφ(t) could be found
by solving the system of equations. Unfortunately, the basic W. Kermack and A.
McKendrick SIR model, on which our work relies, cannot be solved analytically
[6]1. The additional complexity of our own system of differential equations only
lessens the chances of finding an analytical solution. However, we can still solve
the system of differential equations by using numerical methods [6]. We resort
to a numerical ODE solver in Mathematica to compute functions Kφ(t), Iφ(t),
and Rφ(t), to analyze the game’s evolution and its steady-state equilibrium.

Our first concern in the game analysis is to study the evolution of the rates at
which (i) seekers become informed by contacting informed peers (Kφ → Iφ+1),
(ii) informed agents share data with seekers (Iφ+1 → Iφ), and (iii) the rate at
which seekers become informed by contacting the LBS (Kφ → Iφ). We do this
because these are the only three transitions that have utilities different from
zero (see Table 2). From the plots in Figure 3, it is clear that the rate at which
informed agents share data equals the rate at which seekers obtain data from
informed peers (plots of Kφ → Iφ+1 overlap those of Iφ+1 → Iφ in 3a and 3d).
Varying the contact rate, rcon, average information lifetime, 1/rinf, average time
before calling the server, 1/rsrv, and the request rate, rreq, affects the proportion
of agents occupying each of the three roles (i.e. seeker, informed, and removed)
at equilibrium. By balancing the transition rates (Figure 3d), it is possible to
achieve a uniform proportion of agents in each of the three roles (Figure 3e).

Decreasing the common threshold α increases the fraction of informed agents
willing to cooperate, i.e. all informed agents i whose cumulative cooperation
effort is above the threshold φi(t) > φmin = α. Consequently, seekers begin
querying informed peers (Kφ → Iφ+1) more often than the LBS (Kφ → Iφ),
thus raising their payoffs from binf − csrv to binf per query. The total discounted
payoff stabilizes when the cumulative cooperation effort of most informed agents
is above the threshold and the rate of transition Kφ → Iφ+1 no longer increases.

1 See Section 1.5 of [6].
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Kφmax Iφmax Rφmax

RφminIφminKφmin

I0 R0

R1I1

rreq · Rφmax(t)

rinf · Iφmax(t)rsrv · Kφmax(t)

B(t) · Iφmax(t)

B(t) · I2(t)
rreq · R1(t)

A(t) · K1(t)

A(t) · Kφmax−1(t)

rreq · R0(t)

rreq · Rφmin(t)

B(t) · I1(t)A(t) · K0(t)

rsrv · K1(t)

rsrv · K0(t)

rsrv · Kφmin(t)

rinf · I1(t)

rinf · I0(t)

rinf · Iφmin(t)

B(t) · I0(t)

B(t) · Iφmin+1(t)

A(t) · K−1(t)

A(t) · Kφmin(t)

K1

K0

Fig. 2. State diagram of the n-agent game. Initially all agents have a null cumula-
tive cooperation effort and are spread out across the three states: K0, I0, and R0. A
seeker at state K0 can become informed by contacting an informed agent at states
Iφmin+1,. . . ,I0,. . . ,Iφmax and switch to state I1. If this fails, the same seeker can ob-
tain regional data through the LBS, maintaining its cumulative cooperation effort, and
switch to state I0. Informed agents at states Iφmin+1,. . . ,I0,. . . ,Iφmax can share data
with seekers, in which case their cumulative cooperation effort drops by one unit, and
they fall to a lower level in the diagram. An informed agent at state Iφmin does not
cooperate with seekers and seekers at state Kφmax can only become informed via the
LBS. Once the information expires, informed agents become removed and can later
become seekers. The transitions represent the rates at which agents change state.
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This phenomenon is illustrated in Figures 3c and 3f, where the total discounted
payoff function Utotal(α) is almost level for α ≤ −4 in 3c and α ≤ −5 in 3f.

We proceed to estimate the distribution of agents for the whole range of
cumulative cooperation values, i.e. φ ∈ [φmin, φmax] = [α, (1 − n)α], assuming a
uniform distribution of agents for the three possible roles at the game’s steady
state equilibrium. As we represent the population of agents in each state as a
fraction of unity and given that agents can only be in a single state at a time,
the sum Kφ(t)+ Iφ(t)+Rφ(t) can be interpreted as the probability that a given
agent i has a cumulative cooperation effort equal to φ at time t:

Pr{∃i : φi(t) = φ} = Kφ(t) + Iφ(t) + Rφ(t) . (21)

For a large population of agents (n >> 2) and at the game’s steady-state equi-
librium (t → ∞ or t∞), we estimate this probability (21) as

Pr{∃i : φi(t∞) = φ} ≈ 1
1 − α

· 1

(1 − 1/α)φ−α
, (22)

where
∑(1−n)α

φ=α
1

1−α · 1
(1−1/α)φ−α → 1, for α ≤ −1 and n → ∞. In Figure 4 we plot

(21) and (22) for a population of n = 40 agents and a threshold of α = −2. The
estimate (22) is particularly relevant to characterize agents’ rational behavior
at equilibrium, which allows them to quantify the rates of all transitions with
utilities different from zero, and to be able to choose the optimal threshold αopt

to maximize their payoff.
Assuming we reach a uniform distribution of agents occupying each of the

three roles at the game’s steady-state equilibrium, as with the case illustrated in
Figure 3e, we can estimate the probability that a given agent i is in, for example,
state Kφ as: 1/3 · Pr{∃i : φi(t∞) = φ} (the same holds for Iφ and Rφ). This
enables us to estimate the total rate at which information is shared by informed
agents, t̂rtotal(α) ≈ trtotal(α, t∞), received by seekers contacting informed peers,
r̂ctotal(α) ≈ rctotal(α, t∞), and received by seekers contacting the LBS, ŝvtotal(α),
at the game’s steady-state equilibrium, as shown below:

t̂r(α) =
rcon

32
· α

α − 1

[(
α − 1

α

)nα

− 1
]2

, (23)

r̂c(α) = t̂r(α) , (24)

ŝv(α) =
rsrv

3

[
1 −

(
α − 1

α

)nα−1
]

. (25)

Using (23)-(25) we estimate the game’s total payoff at equilibrium as

Ûtotal(α) = binf · r̂c(α) − ccom · t̂r(α) + (binf − csrv) · ŝv(α) (26)

and an agent i’s total payoff at equilibrium as

Û(α) =
1
n
· Ûtotal(α) , (27)

for a large, but finite agent population of size n (n >> 2).
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Fig. 4. Distribution of the cumulative cooperation effort. The plot shows the fraction
of agents with a specific cumulative cooperation effort, for Πφ = [φmin, φmax], assuming
we have 1/3 of each type of agent at the game’s steady-state equilibrium.

Agents acting to maximize their payoffs will benefit by decreasing their thresh-
old. A lower threshold implies that more agents are willing to cooperate when
informed. Seekers can obtain regional data from this larger pool of coopera-
tive informed agents, instead of using the LBS and gathering a higher payoff.
Clearly, the benefit of acquiring data from an informed peer and sharing it with
another agent is greater than the payoff achieved when connecting to the LBS:
binf − ccom > binf − csrv, provided 0 ≤ ccom < csrv < binf ≤ 1. In order to con-
sider an optimal threshold (αopt), as illustrated in Figures 3c and 3f, we define
a tolerance ε > 0 such that an agent i will not ponder reducing α to maximize
its payoff if the added benefit is less than ε:

αopt = max{α ≤ −1 : Û(α − 1) − Û(α) < ε} . (28)

7 Conclusion

The MobiCrowd system architecture introduces only minor changes to the way
traditional location-based schemes operate, thus enabling users to obtain geo-
graphic data from other peers and to potentially improve their location privacy
by reducing the amount of queries that participants send to the LBS server [14].
However, the improvement in privacy is only possible if users are willing to coop-
erate. The goal of our work is to learn if users adopting the MobiCrowd system
would be willing to collaborate by sharing regional data between themselves in
order to avoid the privacy threat of connecting directly to the LBS provider. To
study this problem we first developed a game-theoretic framework, from which
we defined two infinitely repeated games of imperfect information.

In the first game, we model two agents that are chosen to query the LBS with
equal probability. We derived two Nash equilibria in this game, one favors mutual
cooperation that is Pareto optimal and the second favors mutual defection. In the
second game, by modifying the original MobiCrowd SIR model [14] to support
agent rational behavior using threshold strategies we represent an interaction
between multiple agents confined to a single region. Due to the complexity of
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modeling peer-to-peer interactions in this case, we use transition rates to define
the pace at which agents change state over time and we assign payoffs to each
transition. From the analysis of this game, we derive the optimal threshold that
maximizes an agent’s expected payoff, for a large population of agents, assuming
a uniform distribution of agents at the steady-state equilibrium.

Our results show that rational agents attempting to maximize their payoffs
will benefit by sharing data with their peers, both in the controlled environ-
ment of the two-agent game and in the more realistic n-agent scenario. As
a future development of this work, we plan to analyze the same contextual-
data sharing problem considering threshold strategies with an independent (per
agent) threshold, experiment with different types of reactive strategies, and in-
troduce statistical processes describing the rate at which agents enter and leave a
region.
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Appendix A Total Discounted Payoff

Using the transitions, rates and payoffs (defined in Table 2), we can calculate
the total discounted game payoff by integrating over the duration of the game
the product of the payoff rate, u(α, t), and the discount factor, δ ∈]0, 1[. The
payoff rate, u(α, t), is defined as the difference between the benefit rate b(α, t),
and the cost rate, c(α, t):

u(α, t) = b(α, t) − c(α, t) , (29)

where

b(α, t) = binf

(1−n)α−1∑
l=α

A(t) · Kl(t) + (binf − csrv)
(1−n)α∑

l=α

rsrv · Kl(t) , (30)

and

c(α, t) = ccom

(1−n)α∑
l=α+1

B(t) · Kl(t) . (31)

We now apply Definition 2 to calculate the total discounted reward as a function
of the threshold α:

Utotal(α) =
∫ ∞

0

δtu(α, t) dt . (32)
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Appendix B Game Dynamics

The system of non-linear differential equations governing the fraction of agents
in each state, Kφ(t), Iφ(t), Rφ(t), for φ ∈ [φmin, φmax], is

K ′
φmax(t) = rreq · Rφmax(t) − rsrv · Kφmax(t) , (33)

I ′φmax(t) = A(t) · Kφmax−1(t) + rsrv · Kφmax(t)
− (B(t) + rinf) Iφmax(t) , (34)

R′
φmax(t) = rinf · Iφmax(t) − rreq · Rφmax(t) , (35)

K ′
φmin<φ<φmax(t) = rreq · Rφ(t) − (A(t) + rsrv)Kφ(t) , (36)

I ′φmin<φ<φmax(t) = A(t) · Kφ−1(t) + rsrv · Kφ(t) − (B(t) + rinf) Iφ(t)
+ B(t) · Iφ+1(t) , (37)

R′
φmin<φ<φmax(t) = rinf · Iφ(t) − rreq · Rφ(t) , (38)

K ′
φmin(t) = rreq · Rφmin(t) − (A(t) + rsrv) Kφmin(t) , (39)

I ′φmin(t) = rsrv · Kφmin(t) + B(t) · Iφmin+1(t) − rinf · Iφmin(t) , (40)

R′
φmin(t) = rinf · Iφmin(t) − rreq · Rφmin(t) . (41)

As agents can only be in a single state at a time, the following relationship must
also hold:

φmax∑
l=φmin

Kl(t) +
φmax∑

l=φmin

Il(t) +
φmax∑

l=φmin

Rl(t) = 1 . (42)
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