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ABSTRACT

Direct-to-consumer genetic testing makes it possible for ev-
eryone to learn their genome sequences. In order to con-
tribute to medical research, a growing number of people pub-
lish their genomic data on the Web, sometimes under their
real identities. Howewver, this is at odds not only with their
own privacy but also with the privacy of their relatives. The
genomes of relatives being highly correlated, some family
members might be opposed to revealing any of the family’s
genomic data. In this paper, we study the trade-off between
utility and privacy in genomics. We focus on the most rel-
evant kind of variants, namely single nucleotide polymor-
phisms (SNPs). We take into account the fact that the
SNPs of an individual contain information about the SNPs
of his family members and that SNPs are correlated with each
other. Furthermore, we assume that SNPs can have different
utilities in medical research and different levels of sensitiv-
ity for individuals. We propose an obfuscation mechanism
that enables the genomic data to be publicly available for re-
search, while protecting the genomic privacy of the individu-
als in a family. Our genomic-privacy preserving mechanism
relies upon combinatorial optimization and graphical models
to optimize utility and meet privacy requirements. We also
present an extension of the optimization algorithm to cope
with the non-linear constraints induced by the correlations
between SNPs. Our results on real data show that our pro-
posed technique mazximizes the utility for genomic research
and satisfies family members’ privacy constraints.

Categories and Subject Descriptors

C.2.0 [Computer-Communication Networks]: Gen-
eral—Security and protection (e.g., firewalls); J.3 [Life
and Medical Sciences]: Biology and genetics; K.4.1
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1. INTRODUCTION

Genomic research has revolutionized our understanding
of medicine: the “one size fits all” approach has already
been replaced by personalized medicine for the treatment
of many diseases, for which genetic factors of the individu-
als play an important role. This also paves the way to the
early diagnoses of many serious diseases. The association of
genetic factors with diseases and treatments is only possi-
ble via large-scale genome-wide association studies (GWAS)
that require the availability of a considerably high number of
human genomes. Computers are at the core of this endeavor,
because (i) high computing power is required to interpret ge-
nomic data [IT], (ii) hand-held devices are used to visualize
this data, and (iii) increasingly more people upload genomic
data (and more generally health-related data) on public web-
sites (e.g, OpenSNP.org and personalgenomes.org). Com-
puting systems facilitate data access and processing for le-
gitimate usage, but sometimes also for purposes that were
initially unintended, thus raising privacy concerns.

Genomic data carries much sensitive information about
its owner. By analyzing the DNA of an individual, it is
now possible to learn about his disease predispositions (e.g.,
for Alzheimer’s or Parkinson’s), ancestries, and physical at-
tributes [I7]. The threat to genomic privacy is magnified
by the fact that a person’s genome is correlated to his fam-
ily members’ genomes, thus leading to interdependent pri-
vacy risks. Kin genomic privacy was popularized by the
story of Henrietta Lacks whose cells were sequenced and
whose DNA sequence was put online without the consent
of her descendants [I]. After complaints from the family,
essentially due to privacy concerns, Henrietta’s genome was
taken offline, and in 2013, the National Institutes of Health
(NIH) came to an agreement with the Lacks family, which
gave them some control over her genome [2]. Even though
this agreement enables the genomic researchers to use Hen-
rietta’s genome again, it also draws attention to the lack
of techniques for balancing the benefits of genomic research
with personal and kin genomic privacy risks. Richard Sharp,
the director of biomedical ethics at the Mayo Clinic, warned
that the agreement was only a “one-off solution” rather than
a broad policy that addresses the tension between research
and relatives’ privacy, and he added that a “new policy” was
absolutely needed [2].

Anonymization was the first countermeasure proposed to
protect genomic privacy, but in many different studies it was
proven inadequate [20,21}[33]. Another protection mecha-
nism is to add noise to aggregate statistical results (to sat-
isfy differential privacy) [I8l[25], but at the cost of reduced



accuracy. The last option proposed in the literature is to
rely on cryptographic techniques [4.[6]. Even though these
techniques are proven to be effective for using genomic data
in healthcare [4[12], computational complexity becomes very
high when it comes to conducting statistical tests on large
numbers of encrypted genomes for genomic research [26].

In this work, we present a genomic-privacy preserving
mechanism (GPPM) for reconciling people’s willingness to
share their genomes (e.g., to help researckﬂ) with privacy.
Our GPPM acts at the individual data level, not at the ag-
gregate data (or statistical) level like in [I8,25]. Focusing
on the most relevant type of variants (the SNPs), we study
the trade-off between the usefulness of disclosed SNPs (util-
ity) and genomic privacy. We consider an individual who
wants to share his genome, yet who is concerned about the
subsequent privacy risks for himself and his family. Thus,
we design a system that maximizes the disclosure utility but
does not exceed a certain level of privacy loss within a fam-
ily, considering (i) kin genomic privacy, (ii) personal privacy
preferences (of the family members), (iii) privacy sensitiv-
ities of the SNPs, (iv) correlations between SNPs, and (v)
the research utility of the SNPs. Our GPPM can automat-
ically evaluate the privacy risks of all the family members
and decide which SNPs to disclose. To achieve this goal, it
relies on probabilistic graphical models and combinatorial
optimization. Our results indicate that, given the current
data model, genomic privacy of an entire family can be pro-
tected while an appropriate subset of genomic data can be
made available. Our contributions can be summarized as
follows:

e We propose a GPPM for enabling genomic research
while protecting personal and kin genomic privacy.

e Given the genomic data model, our obfuscation mech-
anism maximizes the utility and meets all the privacy
constraints of a given family.

e Using combinatorial optimization, we first compute
the optimal solution without considering correlations
between SNPs, and then we extend the algorithm to
address non-linear constraints induced by these corre-
lations.

The paper is organized as follows. In Section[2] we present
the adversary model and our privacy metrics. In Section [3]
we present our GPPM in detail. Next, in Section E we
evaluate its performance. In Section Bl we summarize the
related work, before concluding in Section

2. PRELIMINARIES

In this section, we briefly introduce the adversary model
and our quantification framework for measuring genomic pri-
vacy. We encourage the reader to look at Section 2.1 of [23]
for an introduction to the relevant genomic concepts.

2.1 Adversary Model

The objective of the adversary is to infer the values of
hidden SNPs of one or more members of a given familyﬂ To

"http://opensnp.wordpress.com/2011/11/17 /first-results-
of-the-survey-on-sharing-genetic-information/

2We assume here that the attacker has de-anonymized the
genome(s) owner(s) and knows (part of) the familial rela-
tionships. For more details, take a look at the Appendix A
and Subsection 2.2 of [23].
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do so, he relies on some background knowledge, essentially
the minor allele frequencies (MAFSs) of the SNPs, the linkage
disequilibrium (LD) values between the SNPs, and the ba-
sic rules of Mendelian inheritance. Note that LD values are
only expressed between pairs of SNPs by geneticists, thus
only pairwise correlations are available to the adversary. In
addition to this background information, the adversary ob-
serves a subset of the SNPs of the family members, typically
those who have disclosed their genomic data.

The attacker’s ultimate goal is then formally defined
as computing posterior marginal probabilities of unknown
variables from the global posterior probability distribution
P(Xu|Xo,K), where Xg represents the set of hidden SNPs,
Xo the set of observed SNPs, and K the background knowl-
edge or data model. This inference attack can be efficiently
carried out by relying on belief propagation (see Subsection
3.2 of [22] for more details about the algorithm).

2.2 Privacy Metrics

We define F to be the set of family members in the targeted
family and S to be the set of SNP IDs (i.e., positions on the
DNA sequence), where |F| = n and |S| = m. We also let
z’ be the value of SNP j (j € S) for individual i (i € F),
where x; € {0,1,2}. Furthermore, we let X = Xo UXu be
the set of SNPs of all family members, hence |X| =n - m.

The inferred marginal probabilities can be expressed as
P(:E3|XO7IC), for all i € F,j € S. We quantify privacy by
measuring the adversary’s incorrectness, i.e. the adversary’s
error in inferring the targeted SNPs. This quantifies the
expected distance between the adversary’s estimate on the
value of a SNP, :E;, and the true value of the corresponding
SNP, :c; This expected estimation error can be expressed
as follows:

Ej= Y  P(#Xo,K)zj - &l
ﬁ;e{o,l,Q}

)

The above metric is useful for quantifying the genomic pri-
vacy of individuals. To quantify individuals’ health privacy,
we can focus on the predisposition to different diseases. Let
S4 be the set of IDs of the SNPs that are associated with a
disease d. Then, health privacy for an individual ¢ regarding
the disease d can be quantified as follows:

) 1 )
Dg = =—— crEy,
Zkesd Cr Z

k€Sq

(2)
where ¢ is the contribution of SNP k to disease d.

3. PROPOSED SOLUTION

In order to mitigate attribute-inference attacks and pro-
tect genomic and health privacy, the GPPM relies upon an
obfuscation mechanism. In practice, obfuscation can be im-
plemented by adding noise to the SNP values, by injecting
fake SNP values, by reducing precision, or by simply hiding
the SNP values. In this paper, we choose SNP hiding, es-
sentially because the genomic research community would not
receive other options positively. Indeed, genetic researchers
are very reluctant about adding noise or fake data, notably
because of the huge investment they make to increase (se-
quencing) accuracy. We assume one family member, at a
given time, who wants to disclose his SNPs and to guaran-
tee a minimum privacy level for him and his family. Fig. [I]
provides an overview of our GPPM.
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Figure 1: General protection framework. The GPPM takes as inputs (i) the privacy levels of all family
members, (ii) the genome of the donor, (iii) the privacy preferences of the family members, and (iv) the
research utility. First, LD is not considered in order to use combinatorial optimization (see Subsection [3.2]).
Note that we go only once through this box. Then, LD is used and a fine-tuning algorithm is used to cope
with non-linear constraints. See Subsection for details on the end criterion. The algorithm outputs the

set of SNPs that the donor can disclose.

3.1 Settings

For clarity of presentation, we focus on one family whose
members are defined by the set F (|[F| = n). We assume that
there is only one donor D who makes the decision to share
his genome at a given time. His relatives might have already
publicly shared some of their genomic data on the Internet.
D takes this into account when he makes his own disclosure
decision. We let S (|S| = m) be the set of SNP IDs. Its
cardinality m can go up to 50 million, as this is currently the
approximate number of SNPs in the human population [3].
In practice, however, people put online (e.g., on OpenSNP)
up to 1 million of the most significant SNPs. We let XP =
{zP : j € S} represent the set of SNPs of D (z} is the value
of SNP j of the donor D), that are all initially undisclosed,
ie. XP C Xg (where Xg denotes the set of SNPs from
X whose values are hidden, as discussed before). Finally,
we let y” = {y : j € S} represent the decision vector
of D, where yJD = 1 means the corresponding SNP will be
disclosed, and ij = 0 means ij will remain hidden. Note
that the decision to disclose a SNP j could be probabilistic,
thus transforming yJD into a continuous variable in [0, 1]. We
leave the study of the continuous case for future work.

We express the privacy constraints of a family member
both in terms of genomic and health privacy. Our framework
can account for different privacy preferences for different
family members, SNPs, and diseases. For all i € F, j € S,
we define the privacy sensitivity as 53 We can set the 53 ’s
to be equal by default. Then, an individual willing to per-
sonalize his privacy preferences may further define his own
privacy sensitivities regarding specific SNPs based on his pri-
vacy concerns regarding, e.g., certain phenotypes. The most
well-known example of such a scenario is the case of James
Watson, co-discoverer of DNA, who made his whole DNA
sequence publicly available, with the exception of one gene
known as Apolipoprotein E (ApoE), one of the strongest
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predictors for the development of Alzheimer’s disease[] We
let the sets P. and P} include the privacy-sensitive SNP
IDs and privacy-sensitive diseases of individual 4, respec-
tively. We represent the tolerance to the genomic-privacy
loss of individual i as Pri(i, P.), and the tolerance to the
health-privacy loss of individual i regarding disease d € P4
as Pri(¢,d). These tolerance values represent the maximum
privacy loss (after the disclosure of D’s SNPs) that an indi-
vidual would bear. By considering the privacy losses instead
of the absolute privacy levels, we ensure that the donor will
more likely reveal a SNP whose value is already well inferred
by the attacker before donor’s disclosure (e.g., by using SNPs
previously shared by the donor’s relatives). Note that these
tolerance values can always be updated for any new family
member willing to disclose his genome. Finally, the utility
function is a non-decreasing function of the norm of y?,
as the knowledge of more SNPs can only help genomic re-
search. In a first step towards enhanced genomic privacy, we
assume linear contribution of SNPs on utilityﬂ Formally, we
define u; to be the utility provided by SNP j. Note that, in
practice, the utility of the SNPs can be determined by the
research authorities and can vary based on the study.

3.2 Linear Optimization

3.2.1 Optimization Problem

The donor faces an optimization problem: How to maxi-
mize research utility while protecting his own and his rela-
tives’ genomic and health privacy. First, the objective func-
tion is formally defined as > jes ujy]]-j . Then, privacy con-
straints are defined, for each individual, as the sum of pri-
vacy losses induced by the donor’s disclosure over all SNPs.
This sum must be capped by the respective privacy loss tol-
erances of all family members. Formally, for all individuals
i € F and SNPs j € S, the privacy loss induced by the dis-

3Later researchers have used correlations in the genome to
unveil Watson’s predisposition to Alzheimer’s [29]. In this
work, we also consider such correlations.

“We intend to study non-linear utility in future work.



closure of z} is defined as (E}(y; = 0)— Ei(y; = 1)). Note
here that the privacy loss at a given SNP j for any relative is
only affected by the donor’s decision ij regarding SNP j but
no other SNP k # j, meaning that LD correlations are not
taken into account. We make this assumption here in order
to define linear constraints. We show how to extend the lin-
ear optimization problem to include LD correlations in Sub-
section 3.3} Finally, note that if an individual ¢ has already
revealed his SNP j, i.e. 1:3 € Xo, the privacy loss at this
SNP for i is zero, because E}(yP = 0) = Ei(yf = 1) = 0.
For all i € F, j € S, the privacy weight p§ is defined as

1). ®3)

Clearly, p§- at a given SNP j can be different for each family
member, depending on how close he is from the donor in the
family tree, on the actual values 1:3 and :ch of his and the
donor’s SNPs, and on his sensitivity. Note that sé =0Vj ¢
PL.

We can now define the linear optimization problem as

p; =55 x (Ej(y; = 0) — Ej(y; =

. D
ma)}%nlze Zijj
jes
subject to Z pj»yf < Pri(z}PiLVi eF
jeP; (4)
> piyi < Pri(i,d),Vd € P§,Vi€ F
kES,

y; €{0,1},Vj €8,

where Sg is the set of SNPs that are associated with disease
d. Note that, for the last inequality, we replace the sensi-
tivity st in pi by the contribution ¢, of SNP k to disease
d described in (@), and we embed the normalization factor

> ¢k of @) in Pri(s, d).
3.2.2  Optimization Algorithm

Our optimization problem is very similar to the multidi-
mensional knapsack problem [I9]. We decide to follow the
branch-and-bound method proposed by Shih [31], because
it finds the optimal solution, represents a good trade-off be-
tween time and storage space, and allows for the extension
of the algorithm to null and negative (privacy) weights. A
branch-and-bound algorithm is a systematic enumeration of
all candidate solutions, where large subsets of candidate so-
lutions are pruned by using upper bounds on the quantity
being optimized. A branch-and-bound method generally re-
lies on two main rules: (i) the estimation of the upper bound
at any node (state of assigned variables) in the search tree,
and (ii) a choice criterion for the selection of a branching
variable at the node selected for further partitioning.

In order to find (i), Shih suggests treating the C-constraint
knapsack problem as C single-constraint knapsack problems
with the same objective function, and then computing the
value associated to the optimal fractional solution (thus re-
laxing y;” € {0, 1} into y;” € [0,1]) of all of these C problems
separately. The fractional optimal solution is easier to solve
than the integer solution, as it enables us to sort the items
(SNPs), with respect to their ratios between utility and pri-
vacy weights rj- = uj/pé-, from the highest to the lowest ra-
tios, and then to select all the highest ones that can fit under
the constraint, with the last SNP being partially included
(based on the remaining room). Note that, in our setting,
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we can have different orderings of SNPs for different con-
straints, based on the p§- values of the family members. The
computation of the fractional optimal solution is repeated
C times, for the C different optimization problems, leading
to C' optimal values. Then, the upper bound at the given
node is defined as the minimum among all these C' values.

The node selected for the next branching is defined as the
one in the search frontier whose upper bound is the highest
among all nodes in the frontier, and where the solution as-
sociated with this upper bound is infeasible (some variables
being different than 0 and 1, or some constraints being not
satisfied). The branching variable is the one whose ratio is
the smallest among all the non-zero free variables (variables
not explicitly assigned to 0 or 1 at a node) in this infeasible
solution. If the solution at this node is feasible (all decision
variables assigned to 0 or 1 and all constraints satisfied),
then it is optimal, and the algorithm stops.

Let us mention that our optimization problem has two
main differences with the multidimensional knapsack prob-
lem. First, the privacy metrics, hence weights, are expressed
in real values, between 0 and 2 for E;-7 whereas the knapsack
problem assumes integer numbers only. In order to obtain
integer values, we merely multiply all our privacy weights
p'’s and tolerance values Pri(.) by 10, where k € NT de-
pends on the precision we want to attain, and then round
the weights to the closest greater integer and the tolerance
values to the closest smaller integer. This ensures that all
privacy constraints in the space of real numbers are still sat-
isfied. Second, the privacy weight p; can be equal to zero
(e.g., if #% € Xo) or even negative (when the donor reveals
a SNP whose value increases the privacy of his relative(s)
at the same SNP)E Thus, the ratios r§ might not be de-
fined or be negative. In order to resolve this issue, we give
a higher ranking in the ordering of SNPs to ratios with null
weights with respect to those with positive weights, and we
give an even higher ranking to those with negative weights.
We furthermore give higher ranking to negative weights with
absolute values higher than the others. To enforce this rank-
ing in practice in Section [ we set rj- = u;/0.1 for null 10§7s,7
and r} = u;|p’|/0.01 for negative p}’s. Note that, due to the
requirement of integer values for weights, all other (positive)
weights p§- belong, after the aforementioned multiplication
by 10* and rounding, to N7.

The output of the above optimization algorithm is an op-
timal solution y*P that represents the set of SNPs the donor
could disclose and an optimal value u* representing the max-
imum research utility. We represent the set of the optimal
candidate SNPs to be shared as XP C XP. _This is the
output we see in state 2 of Fig. We give X as input
to the non-linear algorithm described in Subsection [B.3] to
eventually reach state 3.

3.3 Non-Linear Extension

3.3.1 Non-Linear Optimization Problem

The LD correlations between the SNPs are not consid-
ered in the above optimization problem in order for the con-

®For example, assume a child to be homozygous-major at
a given SNP and his father to be heterozygous. Then, the
estimation error for the child’s SNP, thus the child’s privacy
at this SNP, increases when the father’s SNP is observed
by the attacker (compared to the case when it is unknown,
when only the MAF is used, and this MAF is close to 0).
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Figure 2: Main steps of the optimization algorithm. Without loss of generality, the donor D is assumed to be

the n-th member of the family, thus X” = X".

First, the donor selects a subset X? of candidate SNPs to be

shared using the optimization algorithm of Subsection [3.2.2, and then reveals less or more SNPs depending
on the updated privacy weights computed with LD by relying upon the fine-tuning step of Subsection

straints to remain linear. In this subsection, we propose
an extension of the branch-and-bound algorithm in order to
deal with non-linear constraints.

Whereas in the case without LD, the privacy loss at a
given SNP j of individual ¢ depended only on the donor’s
decision ij regarding SNP j, we have now to consider all
the SNPs in LD with j to evaluate the privacy loss at j.
Defining Ei to be the privacy level of individual ¢ at SNP
K quantlﬁed by including LD correlations, the privacy loss
at SNP j of 1nd1v1dual ¢ induced by the dlsclosure of XP
is equal to (E’( 0) — E'L( PY). This leads to the
following updated privacy weights

i i i D i %D
pj =5 x (Ej(y” = 0) = Ej(y™)).
Note that now the argument of E; is the entire vector y”

and not only yJD , because of LD. The optimization problem
in (@) is reformulated as a non-linear optimization problem:

- D

maa;llr)mze Zujyj
jes

subject to Z pj ) < Pri(i, PL),Vi € F
JEP (6)
> pi(y?) < Pri(i,d),Vd € Py, Vi € F
keS,

yP €{0,1},vj € S.

Instead of solving this very complex optimization prob-
lem, we rely on the optimal solution y*P computed in Sub-
section B.2] embed it into (@), and check whether the privacy
constraints are still met with the updated privacy weights
ﬁ;’s. Let us first study the case when no SNP has been
disclosed by any relative before the donor’s decision] If

SWithout loss of generality, we focus here on the genomic-
privacy constraints.
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Xo = @, then

> E" =

jEPL

=D By =

jEPL
and, because of LD correlations,
S E(yP)< > Ejy”
jEPL JjEPL
Embedding (@) and (8) in @) and (@), we get

i «D i D
p;(y) > ijyj7

JEPL

)

jEPL
meaning that, for the same value of Pri(i,P%) in @) and
([6), the privacy constraint of family member ¢ in (@) will be
violated with high likelihood once LD is taken into account.
If Xo # @, then two scenarios can happen. If

S By - Ei(y™?) > Ej( — Ej(y” =0),

jEPL jEPL

*D

Privacy difference using LD or not
when X P CXo

Privacy difference using LD or not
when X P CXy

then we get the same inequality (@), leading to the same
consequences of constraint violation. If , on the contrary,

i/ *xD i *D i D
S EiyP) - Ei(y™P) < Y Ej(y iy =0),
JEPL jEPL
(10)
then we get
~z *D

<> Py

JEPY

(11)

jEPL

which might allow the donor to reveal more of his SNPs with-
out violating any of his relatives’ privacy constraints. At a
first glance, Inequality (1) looks counterintuitive. How-
ever, in order to understand it, let us look at Inequality
(@0, which states that the difference in privacy levels if
LD is used or not is smaller after the observation of the



donor’s SNPs XP. This means that, by revealing his own
SNPs, the donor reduces the importance of using LD corre-
lations to correctly infer some of the SNPs of his relatives.
For instance, let us assume the donor to be the father of
a child 7 whose mother has already revealed SNP j, in LD
with another SNP k revealed by the child. Furthermore,
assume that the father, mother, and child are homozygous
major at SNPs j and k. Now, before the father reveals his
SNP j, there is some uncertainty about the child’s SNP j;
but by observing SNP k of the child, the attacker improves
his estimation if he uses LD correlations and thus reduces
his estimation error, meaning Ei(y” = 0) < Ei(y"” = 0).
However, once the father decides to reveal his homozygous
major SNP j (y}‘D = 1), the attacker is certain that the
child’s SNP j is homozygous major, regardless if LD is used
or not, i.e. Ei(y*”) = Ei(y*”) = 0. Thus, we have
Ej(y'?) - Ej(y*?) < Ej(y” = 0) - Ej(y” = 0), lead-
ing by extension to Inequality (I0).

3.3.2  Fine-Tuning Algorithm

Let us first describe how we proceed if one or multiple
constraints are violated once LD correlations are considered
in the privacy quantification. In this case, we first select the
privacy constraint that is not met anymore with the high-
est difference between Pri(i, P%) (or Pri(i,d)) and the newly
computed privacy losses. Focusing on the set of genomic-
privacy constraints, we thus select the constraint of the fam-
ily member k, where

k = argmax{ Z pi(y*") — Pri(i, PL)}.

F
1€ jGPZ

(12)

We want then to hide some SNPs j in X" (i.e. where y}‘D =
1) in order that the constraint of relative k is satisfied again.
For all the SNPs in X, we compute a global privacy weight
5;»“ for SNP j of k that includes the privacy loss induced by
SNP j on the SNPs ! € L in LD with j. We compute this
global privacy weight at SNP j for individual £ as

6 =)+ bt
leL
= 55 (B} (y"=0) — B (y*")+>_ st (Ef (y"=0) —
leL

(13)
Then, we compute the ratios of each SNP j (in XD) for in-
dividual k£ as *Ff = 5;-“/1;]». The SNPs with the highest ratios
represent those where LD correlations cause the highest de-
crease in the genomic privacy of family member k and/or
provide low utility to the optimal solution y*¥ computed in
Subsection[3:2l Thus, these should be removed first from the
set XP in order to meet the privacy constraint of individual
k again, and to cause the smallest decrease in utility.

To see whether the privacy constraint is met for the family
member k, we iteratively remove such SNPs (starting from
the one with the highest ratio) from the set XP and, after
each removal, we input the new solution to the quantification
box. We repeat this until all the privacy constraints are
satisfied for all family members in F. Finally, the SNPs left
in set X after the final iteration are publicly shared. This
case is illustrated in state 3 of Fig.

In the case where including LD correlations in the privacy
quantification actually decreases privacy losses, the privacy
constraints are still met and can even enable for potential

Ef (y™")).
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new SNPs to be included in X?. In this case, we select
the genomic-privacy constraint where the remaining room
between the genomic-privacy constraint and the newly com-
puted privacy loss is the smallest, i.e. we select the con-
straint of the family member k, where

> By

JEPL

k = arg min{Pri(i, P.) —

i€F

(14)

For all SNPs not in X (i.e., where y;” = 0), we compute
the privacy decrease led by LD for k compared to the pri-
vacy level computed without LD. We compute this privacy
difference at a SNP j for individual k as

A = Ej(y;” =0) - Ef(y""), (15)
where E(y;” = 0) is the privacy value at SNP j for indi-
vidual k after the linear optimization (without considering
LD), and E~J’c (y*P) is the privacy quantified using LD. Then,
we compute the ratios of each SNP j (in X*) for individual
k as 7§ = (u;A¥)/sk¥. The SNPs with highest ratios repre-
sent those where LD correlations cause the most significant
decrease in the genomic privacy of family member k, and/or
provide high utility. Thus, these SNPs are the ﬁrst ones
that should be included in X* , in order to have the small-
est difference in privacy loss, thus still meeting k’s privacy
constraint and providing max1mal utility increase.

We iteratively add SNPs in XP and input the new so-
lution to the quantification box to check whether all the
privacy constraints are still met for all family members. We
repeat this step until one privacy constraint is violated again,
and we publicly share the last set XP to have satisfied all
constraints. In the next section, we briefly show experimen-
tally how close this fine-tuning algorithm is to the maximum
found with exhaustive search. The thorough analytical eval-
uation of the discrepancy between the optimal solution and
our approximation is left for future work.

4. EVALUATION

In this section, we evaluate the effectiveness of our opti-
mization algorithm for protecting individual and kin privacy.
We study the balance between maximum achievable utility
and the privacy of each individual in a family. The results
show the total utility we can obtain for different genomic-
privacy guarantees.

We make use of the CEPH/Utah Pedigree 1463 [15]. It
includes the partial DNA sequences of 17 family members:
4 grandparents, 2 parents, and 11 children. In order to re-
main at a representative scale, we keep only 5 randomly
chosen children out of 11. Fig. @ presents the pedigree
structure that we use in our study. We focus on 50 SNPs of
chromosome 1 and assume one genomic-privacy constraint,
including all the 50 SNPs for each family member. Thus, we
have a total of 11 privacy constraints, which represents more
constraints than other generic experiments in the optimiza-
tion literature that included up to 5 or 7 constraints [19].
Considering LD strengths between r? = 0.5 (medium LD)
and 72 = 1 (strongest LD), each SNP is in LD with around
4.5 other SNPs, on average. We set a precision of 0.01 in
our privacy weights and tolerance values, thus multiplying
these real-valued elements by 10?, and rounding them, as
explained in Subsection Parent P5 is assumed to be
the donor in all scenarios presented in this section. In our
evaluations, for the sake of simplicity, we assume each SNP




Utility vs. P5 privacy under low privacy loss tolerance for P5 relatives

20
” )
18
16
GP1 GP2  GP3 GP4 14
\./ \./ 12
z
S0
=)
8
P5 P6 6
4
2

teenn

C7 C8 C9 C10 C11

(a)

04 08 12 16 2 24 28 32 36 4 44
Genomic-privacy loss constraint of parent P5 = Pri(5, Ps)

(b)

Figure 3: Evaluation of the proposed solution on a
real Utah pedigree. (a) Genealogical tree, (b) Util-
ity versus privacy under low tolerance to privacy
loss for all relatives except parent P5, and vary-
ing values of privacy constraints Pri(5, PS5) for parent
P5 (x-axis). Here, Xo = @, meaning that no rel-
ative has revealed any SNP before P5. Low toler-
ance is defined as 1/4 of the total privacy loss that
a relative would incur if all 50 SNPs of P5 were
revealed. Results are shown up to Pri(5,P2) = 4.4
even if P5’s privacy constraint can go beyond be-
cause, from Pri(5, P2) = 4, the utility stops increasing
(capped by other relatives’ low tolerance).

is equally useful for the genomic research, i.e., u; = 1 for all
SNPs. We also assume the privacy sensitivities are equal,
for all SNPs and individuals, i.e., s§ = s. Equal values of
sensitivities for all SNPs would typically be the default set-
ting if, for example, family members do not want to bother
setting their privacy sensitivities themselves. Other distri-
butions over the utility or sensitivity values should not alter
the algorithm’s performances significantly.

4.1 No Previous Disclosure by the Family

As of today most people have not publicly revealed their
genome, we first analyze the case where no family member
has shared any of his SNPs before the donor makes his deci-
sion. In other words, we assume that, initially, Xo = @. We
analyze the tension between utility and privacy for different
values of parent P5’s privacy constraint. Fig. shows
the increase in the utility caused by the higher privacy loss
tolerance of P5. Because a low tolerance to privacy loss is
assumed for all the other relatives in the family in this case,
the utility (computed without LD) cannot go beyond 19,
even if P5’s constraint increases beyond 4. We also notice
that, once the LD is included in the privacy quantification,
the utility decreases, reaching a maximum value of 13 in-
stead of 19. This is because LD increases the privacy loss
incurred when P5 reveals his SNPs, thus reducing the total
number of SNPs parent P5 can reveal without violating the
family’s privacy constraints.

4.2 Previous Disclosure by Part of the Family

We want to mimic the situation where some of the family
members have already revealed some of their SNPs. We
simulate this by randomly selecting (with probability 0.5)
some of the family members (except P5, who is the donor)
who reveal a subset of their SNPs. Then, for the members
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Utility vs. P5 privacy under medium privacy loss tolerance for P5 relatives
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Utility vs. P5 privacy under high privacy loss tolerance for P5 relatives
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Figure 4: Utility versus privacy under (a) medium,
(b) high tolerance to privacy loss for all relatives ex-
cept parent P5, and varying values of privacy con-
straints for parent P5 (x-axis). Medium, respec-
tively high, tolerance is defined as around half, re-
spectively 3/4, of the total privacy loss that a rela-
tive would incur if all 50 SNPs of P5 were revealed.
The x-axis represents the privacy loss constraint of
P5, from no privacy loss (strongest constraint) to 9.9
privacy loss (i.e., around 0.2 privacy loss per SNP,
which is a weak constraint).

who are selected to reveal their SNPs, we select, uniformly
at random, some of their 50 SNPs to reveal. In the scenario
we focus on, this leads to the following SNPs being revealed
before the donor’s decision: 8 (different) SNPs revealed by
GP1 and GP2; 35 SNPs revealed by GP3; 42 revealed by
GP4; 0 by P6; 0 SNP by C7, C8, C9, C10; and 30 by C11.
We analyze the relation between utility and privacy for
different genomic-privacy constraint values, for each of the
eleven individuals, Pri(i, P%). Fig. and illustrate
the utility gain with respect to different privacy loss toler-
ance levels for the donor (P5). The two figures differ es-
sentially in terms of the genomic-privacy constraints of the
rest of the family members. In Fig. the tolerance is
medium; more precisely, the privacy constraint for each in-
dividual in the pedigree (except P5) is set to half of the
maximum privacy loss that would be incurred by that indi-
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Figure 5: Genomic privacy of all family members given the genomic-privacy constraint of P5, under the same
setting as in Fig. i.e. under medium privacy loss constraints for P5 relatives: (a) privacy computed
without LD, and (b) privacy computed with LD, before the fine-tuning phase. We do not show the privacy
levels of GP3, GP4 and P6 as these remain constant. Note the large discrepancy in absolute privacy values
and privacy losses between Fig. and Also notice that GP1 privacy curve is hidden by GP2 privacy
curve in Fig. (they have same privacy levels w/o LD).

vidual if the donor revealed all his SNPs. In Fig. the
tolerance is higher, set to 3/4 of the maximum privacy loss.

We first focus on the utility computed using our branch-
and-bound algorithm (case w/o LD). In Fig. we observe
that the utility does not increase beyond 38 when we increase
the genomic-privacy loss constraint of the donor more than
5.4. From this point, the increased privacy tolerance of the
donor does not enable him to reveal more SNPs, because
he is constrained by the rest of the family’s privacy require-
ments. In Fig. we note that the utility keeps increasing
with the privacy loss constraint of P5 because his relatives
are more tolerant regarding their own privacy losses.

Looking at the utility induced once we include the LD
correlations in the privacy quantification, we notice some
increase in the utility. In other words, including LD enables
the donor to reveal more SNPs than without LD. Utility in
both curves reaches 50 SNPs after a 4.5 privacy loss con-
straint for the donor. This can be explained by the fact
that, when LD is considered, we use Equation (B) (privacy
loss with LD) instead of Equation ([B) (privacy loss without
LD) to compute the privacy weights for each SNP in each
constraint. And the privacy loss in Equation (B) is actually
smaller than in Equation (@) in this scenario, essentially be-
cause LD already decreases significantly the relatives’ pri-
vacy before the donor reveals any of his own SNPs. This
is very visible in Fig. and In Fig. we show
the privacy levels for any family member when LD is not
included in the privacy quantification. Fig. shows the
privacy levels when LD correlations are also used in the pri-
vacy quantification.

First, we notice that in both figures, it is P5’s privacy
level that decreases the most, as he is the one who actually
reveals new SNPs in the process. Other relatives’ privacy
is only damaged due to familial correlations. At the origin
of the x-axis (i.e., on the y-axis), we see the privacy levels
before the donor makes a decision, i.e., before the optimiza-
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tion algorithm. We notice that, here again, privacy without
LD is much higher than privacy once LD is used to infer
the SNPs. This is because some relatives have already re-
vealed part of their genomic data. This is the reason, once
P5 reveals his own SNPs, the privacy loss is much smaller
in Fig. than in Fig. As a consequence, the donor
(P5) can reveal more SNPs while still meeting his family’s
privacy constraints, thus leading to the utility increase dis-
played in Fig. and We conclude that the values of
the privacy-loss constraints have to be carefully determined
by the family members or the genetic counsellors, based on
family members’ privacy expectations and on whether LD is
included or not in the initial inference and privacy quantifi-
cation. In our case, in order to make use of the linear opti-
mization framework, we defined the privacy loss constraints
based on the privacy levels computed without LD.

Finally, we compared the optimal solutions computed with
exhaustive search over a subset of 10 SNPs whose privacy
weights were computed with LD, with the solutions derived
from our optimization algorithm presented in Fig.[2l In the
various scenarios we tested, the exhaustive search method
could never find higher utility values than our fine-tuning al-
gorithm. In all scenarios, our fine-tuning algorithm reached
the maximum utility. Thus, even though we do not have
any formal demonstration that the fine-tuning step is opti-
mal, we are confident that in general it provides a very good
approximation of the optimum.

4.3 Computational Complexity

As expected, the highest computation time is on aver-
age induced by the branch-and-bound algorithm (Subsection
B2), due to the high complexity of the multidimensional
knapsack problem. The non-linear extension (Subsection
B3) is by design very efficient, as it relies on previous opti-
mal computations and it updates a minimal set of decision
variables, trading-off exact optimality for computational ef-



ficiency. This last part only requires quantifying privacy
levels twice at the beginning (in the quantification box), to
get the E} (yP? = 0)’s and EJZ (y*P)’s, and then quantifying
once per update on a decision variable y;Dm

The multidimensional knapsack problem is NP-complete
and admits no fully polynomial-time approximation scheme.
From our experiments, we notice that the complexity of the
branch-and-bound algorithm highly differs for different set-
tings, e.g., different privacy-loss tolerance values or privacy
weights. With 50 SNPs, the vast majority of the solutions
were found in less than one second. However, the algorithm
did not scale well for more than 50 decision variables. The
positive side is that this whole process has to be undertaken
only once by the donor and can be run offline. Furthermore,
we considered one privacy constraint for each family mem-
ber, thus eleven constraints in total. In practice, some rela-
tives would certainly not care much about their genomic pri-
vacy, hence some constraints could be relaxed, thus enabling
us to consider more SNPs in the optimization problem. Also,
an advantage of the branch-and-bound algorithm is that it
can be parallelized and distributed using a computer cluster.
The algorithm’s running time then scales linearly with the
number of machines and cores [9]. Another way to reduce
the complexity is to cluster subsets of SNPs together (based
on the diseases they are associated with, or based on the LD
correlations between them), thus trading-off the granularity
of the obfuscation mechanism for computational efficiency.
Note that our optimization problem can easily be adapted
to deal with clusters of SNPs: We can simply define the pri-
vacy weight of one cluster as the sum of the privacy losses
over the SNPs in this cluster. Finally, instead of using an
exact optimization method, heuristic approaches [I9] could
be used to approximate the optimal solution and improve
computational efficiency. We intend to study the efficiency
of these approaches in future work.

5. RELATED WORK

Stajano et al. [32] were among the first to raise the is-
sue of kin privacy in genomics, and to suggest discussing
questions such as; Should you be allowed to disclose your
genome if other relatives do not want to? Our work aims
to address notably this concern. Cassa et al. [10] provide
a framework for measuring the interdependent privacy risks
between two siblings. They show that the inference error is
substantially reduced when the sibling’s SNPs are known,
compared to when only the population frequencies are used.
We generalized this evaluation of kin genomic privacy risks
by considering any SNP(s) revealed by family members, LD
relationships between SNPs, and well-defined privacy met-
rics [22]. The proposed GPPM builds upon this work.

Homer et al. [2I] prove that de-identification is an inef-
fective way to protect the privacy of genomic data, which
is also supported by other works [28][35l[37]. Most recently,
Gymrek et al. [20] showed how they identified DNAs of sev-
eral individuals and families who participated in scientific
studies. Building upon [21I], Sankararaman et al. [30] pro-
vide quantitative guidelines for researchers willing to make a
certain number of SNPs publicly available in GWAS, with-
out revealing the presence of a single individual within a
study group. Fienberg et al. [I8] propose using differen-

"Note that the computational complexity of one quantifica-
tion step is O(nm) [22].
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tial privacy to protect the identities of participants in scien-
tific study. In the same vein, Johnson and Shmatikov [25]
propose privacy-preserving algorithms for computing vari-
ous statistics related to the SNPs, while guaranteeing dif-
ferential privacy. However, differential privacy reduces the
accuracy of research results and is aimed to be applied on
aggregate results. In our work, we focus on protecting indi-
vidual genomes’ privacy.

Some works also focus on protecting the privacy of ge-
nomic data and on preserving utility in medical tests such
as (i) searching of a particular pattern in the DNA se-
quence [7,[34], (ii) comparing the similarity of DNA se-
quences [6,[8,[13[14]24,[27], and (iii) performing statistical
analysis on several DNA sequences [26]. Furthermore, Ay-
day et al. propose privacy-preserving schemes for medi-
cal tests and personalized medicine methods that use pa-
tients’ genomic data [5]. For privacy-preserving clinical ge-
nomics, a group of researchers proposes to outsource some
costly computations to a public cloud or semi-trusted ser-
vice provider [IT}[36]. All aforementioned works make use
of cryptographic protocols to protect the privacy of genomic
data. In this paper, we propose a non-cryptographic ap-
proach for protecting genomic privacy.

Finally, Calmon and Fawaz propose an inference frame-
work for evaluating privacy risks under utility constraints
in a generic setting [16]. Their goal is to minimize infor-
mation leakage subject to certain utility constraints. They
show that their optimization problem can be cast as a modi-
fied rate-distortion problem. They eventually compare their
framework with differential privacy.

6. CONCLUSION

There is little doubt that the momentum in genome se-
quencing will bring new challenges to data security and pri-
vacy. In this work, we convey the importance of building
mechanisms for preserving genomic privacy. Such privacy
goes beyond the protection of genome information of the in-
dividual to the consideration of the interests of family mem-
bers. They might be unwilling to allow predictions of their
SNPs based on leakage of information from one or several
individuals of the kin. The approach presented here searches
for balance between accuracy (utility) of genomic data and
privacy by relying on graphical models and optimization.
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