
4

A Study on the Use of Checksums for Integrity Verification

of Web Downloads

ALEXANDRE MEYLAN, Kudelski Security, Switzerland

MAURO CHERUBINI, University of Lausanne (UNIL), Switzerland

BERTIL CHAPUIS, University of Applied Sciences and Arts (HES-SO/HEIG-VD), Switzerland

MATHIAS HUMBERT, armasuisse S+T, Switzerland

IGOR BILOGREVIC, Google Inc., Switzerland

KÉVIN HUGUENIN, University of Lausanne (UNIL), Switzerland

App stores provide access to millions of different programs that users can download on their computers.

Developers can also make their programs available for download on their websites and host the program

files either directly on their website or on third-party platforms, such as mirrors. In the latter case, as users

download the software without any vetting from the developers, they should take the necessary precautions

to ensure that it is authentic. One way to accomplish this is to check that the published file’s integrity ver-

ification code—the checksum—matches that (if provided) of the downloaded file. To date, however, there is

little evidence to suggest that such a process is effective. Even worse, very few usability studies about it exist.

In this article, we provide the first comprehensive study that assesses the usability and effectiveness of

the manual checksum verification process. First, by means of an in-situ experiment with 40 participants and

eye-tracking technology, we show that the process is cumbersome and error-prone. Second, after a 4-month-

long in-the-wild experiment with 134 participants, we demonstrate how our proposed solution—a Chrome

extension that verifies checksums automatically—significantly reduces human errors, improves coverage,

and has only limited impact on usability. It also confirms that, sadly, only a tiny minority of websites that

link to executable files in our sample provide checksums (0.01%), which is a strong call to action for web

standards bodies, service providers, and content creators to increase the use of file integrity verification on

their properties.

This article is a revised and extended version of a paper that appears in Proceedings of the ACM Conference on Computer

and Communications Security (CCS 2018), Cherubini et al. [1].

This work was partially funded with grant #19024 from the Hasler Foundation and with a grant from HEC Lausanne. This

work was carried out while Alexandre Meylan and Bertil Chapuis were with UNIL.

Authors’ addresses: A. Meylan, Kudelski Security, Route de Genève 22-24, CH-1033 Cheseaux-sur-Lausanne, Switzerland;

email: alexandre.meylan@kudelskisecurity.com; M. Cherubini, University of Lausanne (UNIL), Faculty of Business and

Economics (HEC), Quartier de Chamberonne, Internef, CH-1015 Lausanne, Switzerland; email: mauro.cherubini@unil.ch;

B. Chapuis, University of Applied Sciences and Arts (HES-SO/HEIG-VD), Institute for Information and Communication

Technologies (IICT), Route de Cheseaux 1, CH-1401 Yverdon-les-Bains, Switzerland; email: bertil.chapuis@heig-vd.ch;

M. Humbert, armasuisse Sciences et technologies, Cyber-Defence Campus, Feuerwerkerstrasse 39, CH-3602 Thun; email:

mathias.humbert@armasuisse.ch; I. Bilogrevic, Google Inc., Brandschenkestrasse 110, CH-8002 Zürich, Switzerland; email:

ibilogrevic@google.com; K. Huguenin, University of Lausanne (UNIL), Faculty of Business and Economics (HEC), Quartier

de Chamberonne, Internef, CH-1015 Lausanne, Switzerland; email: kevin.huguenin@unil.ch.

This work is licensed under a Creative Commons Attribution- NonCommercial-ShareAlike International 4.0
License.

© 2020 Copyright held by the owner/author(s).

2471-2566/2020/09-ART4

https://doi.org/10.1145/3410154

ACM Transactions on Privacy and Security, Vol. 24, No. 1, Article 4. Publication date: September 2020.

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://doi.org/10.1145/3410154

4:2 A. Meylan et al.

CCS Concepts: • Security and privacy → Web protocol security; Usability in security and privacy; Hash

functions and message authentication codes;

Additional Key Words and Phrases: Checksums, integrity, security, usability, web downloads

ACM Reference format:

Alexandre Meylan, Mauro Cherubini, Bertil Chapuis, Mathias Humbert, Igor Bilogrevic, and Kévin Huguenin.

2020. A Study on the Use of Checksums for Integrity Verification of Web Downloads. ACM Trans. Priv. Secur.

24, 1, Article 4 (September 2020), 36 pages.

https://doi.org/10.1145/3410154

1 INTRODUCTION

App stores are a very popular means for Internet users to get access to millions of apps for their
computers and mobile devices. The most popular ones—such as Apple’s, Google’s, and Microsoft’s
—offer a curated set of apps that are easy to access for users, and they simplify the distribution for
developers. However, app stores usually impose certain conditions on the software they are willing
to publish. Furthermore, developers may face additional challenges when publishing on them,
such as long review and validation times, technical restrictions (e.g., sandboxing), incompatibility
with software licenses, and substantial commissions [2]. For developers, a common alternative
for distributing their software is to include a download link on their own websites, like for the
popular VLC program; in this case, the program file can be hosted either on the website itself or
on a third-party web hosting platform (e.g., mirrors, content delivery networks).

Hosting software on a website has several advantages for the developers, but it could also nega-
tively affect the users. In particular, security is an important concern when downloading files from
the Internet. Users could be tricked into downloading corrupted software that contains malware,
which could impair the performance of their machine or even steal personal data from it. This
scenario is not limited to the case where the software is hosted on a malicious platform, but can
also happen if a legitimate hosting platform is compromised. In any case, by choosing to host their
software on the web, developers also accept the risk that it could be accidentally or intentionally
modified in an unpredictable way. Recently, both the popular BitTorrent client Transmission [3]
and the Linux Mint distribution [4] were corrupted; the former by a ransomware and the latter
with a backdoor. Such corruptions are particularly problematic for privacy and security software—
such as Tor—used by at-risk populations such as journalists and political dissidents. In general, it
is crucial for website administrators to make sure that the content of the files downloaded by their
visitors through external links matches the content of the files at the time the link was created.

To mitigate such threats, developers can publish alphanumeric strings whose purpose is to en-
able users to verify that the downloaded software has not been accidentally or intentionally modi-
fied from the moment it was published and linked by its developer. Such strings, called checksums,
are commonly used in the open-source community but also by companies such as Google (for
their software Android Studio and Golang). Checksums are usually derived from the output of
cryptographic hash functions (such as SHA-256) in the form of sequences of alphanumeric digits
called digests, and are either displayed on the download webpage or are provided in a separate file.
Users can then verify the integrity of the file they download based on the provided checksums.1

However, there is currently no standard or common way for users to verify such checksums, other
than manually executing dedicated commands on the operating system’s terminal.2 Worse yet,

1Note that checksums only enable users to verify that the file they downloaded is indeed the one the website administrator

intended to share. They do not provide any guarantee that the file is safe to execute.
2By default, the major operating systems include only command-line tools to compute checksums, such as shasum for

macOS and Linux and certutil for Windows.

ACM Transactions on Privacy and Security, Vol. 24, No. 1, Article 4. Publication date: September 2020.

https://doi.org/10.1145/3410154

A Study on the Use of Checksums for Integrity Verification of Web Downloads 4:3

users are required to visually compare such long sequences of characters, which has been proven
to suffer from usability issues and to be prone to errors [5, 6], in contexts other than web downloads
(e.g., PGP key fingerprint verification). Other solutions, such as code-signing, also suffer from some
limitations and only partially address the aforementioned problem. These issues call for automated
and reliable methods.

To the best of our knowledge, no standard or practical solutions have been proposed for auto-
matically verifying web downloads. Moreover, the research community has mostly overlooked the
important topic of the integrity of programs downloaded on the Web. Our research fills that gap
and addresses these important challenges, by first performing a thorough analysis of prevalence of
the threat, the usability and effectiveness of checksums for the visual verification of the integrity
of web downloads, and then by proposing technical solutions to the issues we identify. Specifically,
our contributions are as follows:

• We carry out the first comprehensive study on checksums verification for the integrity of
web downloads. To do so, we conduct an in situ experiment with 40 participants that uses
an eye-tracker to precisely evaluate how users verify checksums. It is the first time that
eye-tracking technologies have been used for studying usability and attention during the
checksum verification process.

• We develop an automated checksum verification browser extension that alerts users when
there is a mismatch between the checksum computed from the downloaded file and that (or
those) available on the developer’s website, when the checksum is displayed in the page.

• We conduct a 4-month in-the-wild experiment with 134 participants in order to study their
download and browsing behavior, their exposure and understanding of checksums, and
their reactions to our browser extension.

• To address the usability and effectiveness issues of checksums, we propose an extension
to the current World Wide Web Consortium (W3C) specification for subresource integrity
(SRI) [7]; it standardizes the use of checksums for external resources such as JavaScript
files, to cover download links of program files. Our solution enables developers to rely on a
standardized method that significantly reduces the user burden of checksum verification.

Our in-situ experiments demonstrate that the verification process is taxing, with a median of
around ten back-and-forth that the eyes of the participants have to do between the checksum
shown on the Web page and the output of the program used to compute the checksum of the
downloaded file. It also demonstrates that, despite being explicitly asked to verify the checksums,
more than one-third of our participants failed to detect the mismatch (i.e., partial pre-image at-
tack) between the checksum displayed on a fake download webpage and the one computed from
the (corrupted) downloaded file. Our in-depth eye-tracking analysis shows that users pay more
attention to the first digits of the checksums, which reduces drastically the security provided by
such checksums. It also suggests that failure to detect mismatch between checksums is associated
with a low number of fixations. Finally, the user feedback collected during the test of the extension
that automates the process shows a good desirability of verification mechanisms integrated in web
browsers.

Our in-the-wild experiment shows that our participants regularly download files that could in-
clude malware (e.g., binary executable files but also PDF files), which would therefore benefit from
integrity verification. Specifically, in our experiment, 7% of all the downloaded files were binary
executables and 56% were PDFs. It also demonstrates that only very few download webpages in our
deployment (0.02%) currently provide checksums for integrity verification. Furthermore, it shows
that the vast majority of our participants (88.6%) do not even notice checksums, know or under-
stand their purpose, or know how to use them. It also suggests that users of our browser extension
feel more secure, as compared to those who do not use it.

ACM Transactions on Privacy and Security, Vol. 24, No. 1, Article 4. Publication date: September 2020.

4:4 A. Meylan et al.

Compared to the conference version of this article [1], we focus on the in-situ experiment
and substantially improve and extend the analysis of the data from the eye-tracking device. In
particular, we include and analyze results on how users navigate between the checksums specified
on the webpage and those computed in the terminal after download, and on the attention users
devote to the different parts of the user interface of the extension. Our results shed light on the
visual process of checksum (or fingerprints in general) verification and provide actionable feed-
back for the design of an automated tool. In addition, we clarify the system and threat models and
include a performance evaluation of the browser extension (in order to assess the delays incurred
by checksum verifications) and we elaborate on the feedback provided by the participants of the
experiment. Moreover, we describe and report in detail on our 4-month in-the-wild experiment,
which was conducted after our original work [1]. Finally, we make available to the community the
dataset we collected through the eye-tracking device. We also open-source the browser extension
on GitHub and distribute it on the Chrome Web Store.

The rest of the article is organized as follows. We survey the related work in Section 2. We intro-
duce the system and threat models as well as the background about checksums and file integrity
verification in Section 3. We describe the proposed solutions—i.e., the browser extension—in Sec-
tion 4, and present the in situ user experiments with eye-tracking in Section 5. We present the
in-the-wild experiment in Section 6. We discuss the main findings and limitations of our work in
Section 7. We conclude the article in Section 8.

2 RELATED WORK

From a high-level perspective, our work can be framed within the broader category of online
security behaviors as it touches upon the subject of security warnings through the lenses of file
integrity verification.

2.1 Download Behavior

Internet users are increasingly exposed to online security threats [8], and their security-related
behaviors are influenced by a combination of cognitive (i.e., understanding of the related threats),
social, and psychological components (i.e., time pressure to complete the related task) [9]. Often
the weakest link—leading to many successful cyber-attacks—is the insufficient knowledge of the
employees, which led to many successful cyber-attacks in the UK [10]. The download behavior is
often also influenced by security recommendations [11–13], meaning that users evaluate digital-
security recommendations based on the trustworthiness of the source of the advice; users might
trust knowledgeable peers more than the source over the content of the recommendation. Unfor-
tunately, none of these studies focused specifically on Internet downloads, which is one of the
goals of this study.

2.2 Effectiveness of Security Warnings

A security warning is a cautionary message usually delivered by the operating system or an app
to users when they are about to perform an action on their device that could have negative conse-
quences. Such actions include downloading or opening a file containing a virus, visiting a website
that contains malware, or simply installing an app from an untrusted source. The users can either
act on such warnings or ignore them. Over the past decade, the research community has exten-
sively studied how users interact with such warnings, and whether the warnings are effective and
understandable [14–22]. These studies are relevant to our work as we also designed an intervention
through a browser extension.

The research on security warnings has shown that security warnings are, on the one hand, effec-
tive at reducing the rate at which users perform potentially harmful actions after they have been

ACM Transactions on Privacy and Security, Vol. 24, No. 1, Article 4. Publication date: September 2020.

A Study on the Use of Checksums for Integrity Verification of Web Downloads 4:5

warned [16, 21, 22]. On the other hand, users tend to ignore such warnings due to their excessive
frequency [23] and habituation effects [15]. In addition to the content, the design matters as well;
a study by Akhawe and Felt [16] showed that users of one browser proceeded to potentially mali-
cious websites twice as often as the users of the other browser, when presented with two different
SSL warnings from two web browsers; a similar finding was made by Bravo-Lillo et al. [23], who
showed that by changing the user interface (UI) elements in the warning to highlight the most im-
portant elements for the users, they can reduce by half the installation rate of potentially malicious
apps.

When looking at what motivates users for act or ignore security warnings and advice, several
studies point out that the most important factors are the perceived security/convenience tradeoff
and the perceived risk of pursuing potentially dangerous actions [24–26]. Yet, the risks associated
with specific actions are often misunderstood by end users or even by developers and webmas-
ters [27].

2.3 File Integrity Verification

Several works have studied, by means of online surveys, the security and usability of different fin-
gerprint representations for authentication and integrity verification. Hsiao et al. have compared
the speed and accuracy of hash verification with various textual and visual representations [5].
Their between-subjects study with 436 participants is the first to show that users struggle with
comparing long fingerprints. More recently, Dechand et al. have studied the performance and
usability of six textual fingerprint representations [6]. Their experiment with 1,047 participants
demonstrates that the state-of-the-art hexadecimal representation is prone to partial pre-image
attacks more than others, with more than 10% of attacks being missed by the users. Similarly, Tan
et al. evaluate the usability and security of eight textual and visual fingerprint representations [28].
The results of their 661-participant experiments suggest that, when security is paramount, the best
strategy is to remove the human from the loop and automate the verification process, which the
authors did not test.

Research on secure messaging also provides us with relevant findings on the usability and
security of fingerprints for authenticating the communicating entities. In their systematization
of knowledge on secure messaging, Unger et al. emphasize the usability and adoption limita-
tions of manual fingerprint verification [29]. Moreover, they mention short authentication strings,
which rely on truncated cryptographic hashes, as a more usable alternative to fingerprints. In a
60-participant study on secure communication tools, Abu-Salma et al. show that fingerprints
are not understood by participants, thus indirectly hindering the adoption of such tools [30].
Vaziripour et al. evaluate the usability of the authentication processes in three popular messag-
ing applications (WhatsApp, Viber, Facebook Messenger) through a two-phase study involving 36
pairs of participants [31]. These participants notably report that fingerprint strings are too long,
and some WhatsApp users appreciate being able to scan QR codes instead of having to compare
long digit strings. Note that in these contexts, unlike for web downloads, automating fingerprint
comparison is not possible because fingerprints usually come from a different channel. On the
practical side, a number of programs (including browser extensions [32, 33]) to compute and ver-
ify checksums with graphical user interface are available. Yet, they only enable users to compute
checksums, not to automatically verify them against those extracted from webpages.

In addition to checksums, digital certificates can be used to certify the authenticity and integrity
of programs. However, some shortcomings of digital certificates include their cost, certificate vali-
dation issues, and private key (of developers and certification authorities) compromise [34, 35]. In
fact, digital certificates (used for code-signing) do not provide the same guarantees that checksums
do: Certificates guarantee that the downloaded files have been produced by certain developers,

ACM Transactions on Privacy and Security, Vol. 24, No. 1, Article 4. Publication date: September 2020.

4:6 A. Meylan et al.

whereas checksums guarantee that the downloaded files are those the website administrators in-
tended to point to. Therefore, checksums do not provide protection in the case where a malicious
website administrator includes a link to a corrupted version of a program (e.g., Transmission).
And certificates do not provide protection in the case where a hacker replaces a program file with
a corrupted version of the program signed with the (valid) account of a malicious developer (or
with a stolen account).

In our work, we focus on one aspect that was neglected by prior research: What is the behavior
of the users when they (are asked to) verify file integrity by using checksums? Instead of test-
ing different design of the checksum, we focus on the process by which participants compare an
hexadecimal checksum with the output of the hash functions. In summary, we go beyond the sole
investigation of manual fingerprint comparison, and we consider the overlooked context of web
download integrity. We also employ eye-tracking techniques to gain a deeper understanding of
how users perform fingerprint/checksum comparisons.

2.4 Automating Integrity Verification

In certain contexts, checksum verification is automated. It is the case with W3C’s subresource
integrity, described below in the background section. It is also the case of package managers such
as brew (macOS) or aptitude (Linux), which enable users to download packages and programs from
so-called repositories. They automatically compare the checksums of the downloaded packages
to those specified in the package description: A typical brew “cask” package contains a link to
an installer hosted on an external platform, a command line to run it, and a checksum to verify
its integrity (see that of VLC3). Such package managers, however, are mostly popular on UNIX
systems and they are used mainly by experienced users (e.g., users familiar with the terminal).4

Note that package managers are also subject to attacks [36].

3 SYSTEM AND THREAT MODEL

In this section, we describe the general system and threat model, as well as the necessary technical
background.

3.1 System and Threat Model

We consider a website hosted on a web server. The website contains a download page that includes
a link to a program hosted on an external web server (a hosting platform, typically on a mirror or
a content delivery network) managed by a different entity. The original website is managed by the
developers. We consider an adversary who is able to tamper with the program files hosted on the
external server (e.g., the operator of the external hosting platform or a hacker) or to tamper with
the insecure (e.g., no SSL/TLS) communication with the external server (e.g., the user’s Internet
service provider or a hacker), as illustrated in Figure 1.

Note that such a situation could also occur when the download webpage and the program are
hosted on the same server but the adversary is only able to tamper with the program file (e.g.,
because it has access to only certain directories on the server).

In order to enable users to check the integrity of the files they download from the external server,
the download page contains the checksum of the program file, which is generated as described
hereafter.

3https://github.com/caskroom/homebrew-cask/blob/master/Casks/vlc.rb.
4As more and more graphical front-ends to UNIX package managers are available (e.g., Synaptic, Ubuntu Software Center),

package managers do not require knowledge of the terminal anymore and become more accessible to inexperienced users,

just like app stores.

ACM Transactions on Privacy and Security, Vol. 24, No. 1, Article 4. Publication date: September 2020.

https://github.com/caskroom/homebrew-cask/blob/master/Casks/vlc.rb

A Study on the Use of Checksums for Integrity Verification of Web Downloads 4:7

Fig. 1. System and threat model. A webpage, hosted on server download.website.com (assumed secure) and
served over SSL/TLS, contains a download link (i.e., an HTML a element) to a file hosted on a different server
(and domain) cdn.com. The file hosted on the external server could be corrupted and the communication
between this external server and the user could be tampered with by the adversary. The download webpage
contains a checksum so that users can verify the integrity of the downloaded file.

3.2 Checksums

A checksum is a fixed-size binary string derived from a block of data of arbitrary size (e.g., a file):
it is used to verify the integrity of the data, i.e., whether the data has been tampered with after
the checksum was created. In adversarial settings, the output of cryptographic hash functions,
called hashes or digests, are used as checksums. Checksums are usually represented as hexadecimal
strings (e.g., 2cae915ae0e...), the sizes of which usually range from 32 to 128 digits (i.e., 128–
512 bits). Cryptographic hash functions enjoy three core properties: pre-image resistance, second
pre-image resistance, and collision resistance [37]. In the settings of web downloads hosted on
external servers, the second property is key: It guarantees that it is computationally hard for an
adversary with access to the original file (and its hash) to forge a different file (e.g., a malware) that
has the same hash. Essentially, an adversary would have to rely on brute-force attacks, that is, to
perform an exhaustive search of slightly modified versions of the file until it finds one with a hash
that matches that of the original file. An adversary can also perform a brute-force attack to forge
a file with a hash that only partially matches that of the original file, namely partial pre-image
attacks. In addition, hash functions usually ensure that even a minor change (even just one bit) in
the input data results in a completely different output hash.

Popular cryptographic hash functions include MD5, SHA-1, and SHA-2. MD5 was one of the
first proposed cryptographic hash functions; it was broken in the late 1990’s and its use is strongly
discouraged. SHA-1 was recommended by the National Institute of Standards and Technology
(NIST) until 2015, when it was broken. SHA-2 is the most popular hash function today and it is
currently the recommended (by NIST) algorithm for file integrity verification [38].

To verify the integrity of a file, users have to execute a dedicated program that takes the file as
input and compare the output (i.e., checksum) with that specified on the download page.

3.3 Subresource Integrity

Subresource integrity (SRI) was introduced by the W3C in 2016 [7]. It specifies that, for external
resources linked to a webpage through an HTML element, an integrity attribute containing a
checksum can be added to the element.5 This mechanism was introduced to detect corruption of
externally hosted scripts. Therefore, in its current form, SRI covers only two elements: the link and
script. These elements are used to include external style sheets (e.g., cascading style sheets–CSS)

5https://www.w3.org/TR/SRI/. Last visited: Dec. 2019.

ACM Transactions on Privacy and Security, Vol. 24, No. 1, Article 4. Publication date: September 2020.

https://www.w3.org/TR/SRI/

4:8 A. Meylan et al.

and scripts (e.g., JavaScript–JS), respectively. The verification of the integrity of the subresources,
based on the provided checksum, is performed by the user agent, typically the web browser. SRI
is currently supported by all the major browsers (except Internet Explorer). If the integrity verifi-
cation of a subresource fails, it is not loaded.

It should be noted that integrity verification mechanisms have some limitations. In particular,
the fact that the checksums must be updated together with the target files is a major issue, espe-
cially when the update process is manual. And failures to address this issue can create detrimental
false alarm situations. These issues are discussed in more details (for SRI) in a recent study [39].

4 AUTOMATING CHECKSUM VERIFICATION

One of the main usability issue in the current form of checksum-based integrity verification is
that the task of computing and verifying checksums needs to be done manually and visually by
the users. In addition, most Internet users are unaware of the utility and usage of checksums [1]. In
this section, we address these problems by proposing both amendments to the existing standards
as well as by technical solutions that we implemented.

4.1 Extending Subresource Integrity to Links

A direct solution for making checksum verifications automatic is to extend the subresource in-
tegrity (SRI) feature [7], introduced by the W3C and described in Section 3, to HTML a elements
(i.e., links) that point to files to be downloaded.

Our proposal is to include an integrity attribute in the a elements, and optionally the meta
and iframe elements, as web developers sometimes rely on them to trigger automatic downloads.
Below, we give an example link that specifies in an integrity attribute the checksum of the file
it points to.

download

Upon a successful download of a file pointed to by a link that includes an integrity attribute, the
integrity of the downloaded file should be checked by the user agent (i.e., the web browser or an
extension) by comparing its (computed) checksum to the one specified in the integrity attribute.

A recent study by Chapuis et al. [39] shows that web developers have a strong interest in ex-
tending SRI to downloads (i.e., a elements) as well as pictures, videos, and the like. We made a pro-
posal in this direction and communicated it to W3C’s WebAppSec Working Group. Our proposal
includes other types of subresources, including images and videos. Note that such subresources
have specificities that must be taken care of (e.g., progressive load of images).

4.2 Checksum Verification: Browser Extension

As browsers do not currently handle SRI for links, we developed a Chrome extension to automat-
ically check the integrity of downloaded files.6 This extension should be considered as a proof of
concept and not as a final product.

Design and Implementation. Our extension supports three popular algorithms used to generate
checksums: the MD5, SHA-1, and SHA-2 hash functions.7 It is implemented in JS and it relies on
the md5.js library for computing MD5 digests8 and the asmcrypto.js library for computing SHA

6Ideally, such a verification should be performed by the web browser.
7We chose to support the MD5 and SHA-1 functions despite their known weaknesses because they are still used [1].
8https://github.com/blueimp/JavaScript-MD5.

ACM Transactions on Privacy and Security, Vol. 24, No. 1, Article 4. Publication date: September 2020.

https://github.com/blueimp/JavaScript-MD5

A Study on the Use of Checksums for Integrity Verification of Web Downloads 4:9

Fig. 2. Screenshot of the extension on the Plex download page. The checksum of the downloaded file is com-
puted and successfully checked against that extracted from the webpage (highlighted). See Figure 12 (p. 19)
for the French version of the messages used in the experiment.

digests.9 In total, the extension consists of ∼400 lines of JavaScript code (excluding the libraries);
it requires permission to access the browser’s download manager in order to initiate and monitor
downloads, as well as read-only access to the file system in order to compute the digest of the
downloaded file.

Because SRI for links is currently not supported, the extension automatically extracts checksums
directly from the text of HTML pages, thus requiring no changes to existing websites (such as VLC).
It operates as follows:

(1) For each visited webpage, it navigates the HTML DOM tree and extracts, by using reg-
ular expressions, hexadecimal strings that have the same format as checksums and the
corresponding hash function names (e.g., MD5).

(2) If checksums are detected (on the webpage or in the integrity attribute of the a element),
it intercepts click events triggered by hyperlinks. If a link points to a file with a sensitive
extension (e.g., dmg, exe) and/or multipurpose internet mail extension (MIME) type10 (e.g.,
application/x-apple-diskimage, application/x-msdownload), the download is followed by
the verification of the checksum, essentially a comparison between the checksum that is
detected and the one computed from the downloaded file.

(3) If multiple checksums are extracted from the webpage, the verification is considered suc-
cessful as long as the computed checksum matches any one of them.11 The webpage
is greyed out and a pop-up message is displayed to the user, as illustrated in Figure 2.

9https://github.com/asmcrypto/asmcrypto.js.
10The MIME type is determined by issuing a HEAD request to the target.
11Note that this reduces only slightly the security of the verification procedure as download pages usually contains only a

few checksums (8 at most in the websites we surveyed in [1], i.e., for Android Studio). As part of future work, we intend

to match automatically checksums to download links by analyzing the DOM of the webpages.

ACM Transactions on Privacy and Security, Vol. 24, No. 1, Article 4. Publication date: September 2020.

https://github.com/asmcrypto/asmcrypto.js

4:10 A. Meylan et al.

Fig. 3. Messages displayed by the browser extension: left (integrity attribute) / right (text of the webpage),
top (success) / bottom (failure). See Figure 12 (p. 19) for the French version of the messages used in the
experiment.

Additionally, if the checksum originates from the text of the webpage, the matching text
with the checksum is revealed (if originally hidden) and highlighted.

The extension displays a general message to the user and a status indicator (e.g., “download-
ing”, “computing checksum”) with an animation. Additionally, it can show four different messages
according to the result of the verification (Figure 3), depending on the origin of the checksum
(webpage text or integrity attribute) and on the outcome of the verification (success or failure). In
the case of failure, users are offered the option to delete the possibly corrupted downloaded file
(through a link). Clearly, there are multiple ways to communicate the result of the verification to
the user, and the UI elements have a significant effect on the usability of our extension [16]. For
the initial proof of concept, we experimented with the four messages shown in Figure 3. A careful
consideration of alternatives that incorporate user feedback should be conducted before a public
release of such an extension. We leave the careful design of the extension UI for future work.

An archive containing the source code of the extension used in the experiment can be down-
loaded at the following address: https://checksum-lab.github.io/chrome_extension.zip (SHA-256:
237ac0154e5d951d22f54c97300d3de81a88333c29ec66334c061edb44f2d368).12 A test webpage
can also be found at the following address: https://checksum-lab.github.io/. It contains test down-
load links with and without (correct/incorrect) integrity attributes and links to the download pages
(that include checksums) of popular software (e.g., Android Studio, Plex, VLC) on which the ex-
tension can be successfully tested. Alternatively, a demo video can be downloaded or watched at
the following address: https://checksum-lab.github.io/demo.mp4.

Performance Evaluation. In order to assess the delays induced by the verification of the check-
sums, we measured the computation times for different hash functions (namely, MD5, SHA-1, and
SHA-2 with 256 bits), based on the implementation of the libraries used in the Chrome extension,
and for different file sizes ranging from 45 MB (corresponding to VLC’s app file) to 1.6 GB (cor-
responding to Ubuntu’s ISO image file). For each hash function and file size, we performed 20
independent runs and we measured the mean and the standard deviation of the computation time.
The results were obtained in a standard setting (MacBook Pro 2014, SSD, 16 GB of RAM, Core
i7@2.2GHz, macOS 10.12.6, Chrome v.65 64-bit). They are shown in Figure 4. It can be observed
that the computation time is reasonable. It takes less than one second to verify the checksum for
small files (<50 MB), and only about ten seconds for large files (∼1 GB). Note that we also compared
the computation times for the extension against those for native programs (e.g., shasum) and find
them to be comparable. Unsurprisingly, we find that the computation time grows linearly with the
file size. The corresponding rates, obtained through a linear regression, are 121 MB/s (MD5), 120

12An updated version is available at: https://github.com/isplab-unil/download-checksum; alternatively, it can be

installed from the Chrome Web Store: https://chrome.google.com/webstore/detail/automated-checksum-verifi/

kabghagbpkdbojdeklmcbfamenmpilga.

ACM Transactions on Privacy and Security, Vol. 24, No. 1, Article 4. Publication date: September 2020.

https://checksum-lab.github.io/chrome_extension.zip
https://checksum-lab.github.io/
https://checksum-lab.github.io/demo.mp4
https://github.com/isplab-unil/download-checksum
https://chrome.google.com/webstore/detail/automated-checksum-verifi/kabghagbpkdbojdeklmcbfamenmpilga
https://chrome.google.com/webstore/detail/automated-checksum-verifi/kabghagbpkdbojdeklmcbfamenmpilga

A Study on the Use of Checksums for Integrity Verification of Web Downloads 4:11

Fig. 4. Performance of the browser extension in terms of the checksum computation time for different hash
functions and file sizes. The graph shows the mean and the standard deviation for 20 independent runs.

MB/s (SHA-1), and 115 MB/s (SHA-2 with 256 bits). The verification throughput is much higher
than those of most broadband connections; the verification time is therefore negligible compared
to the download time for most users. To improve the performance, one can combine any of the fol-
lowing techniques: optimizing the library, optimizing the browser’s JavaScript engine, using native
libraries (e.g., SubtleCrypto), computing the checksum as the file is downloaded (i.e., pipelining).

Shortcomings and Perspectives. There are several limitations and missing features that we intend
to address in the future. First, the UI and the textual messages of the browser extension should
be carefully designed by taking into account user feedback (see Section 5.4) and best practices
for the design of security warnings (see, for instance, [14], [15], [16], [17], [18], [21], [23], [40],
[41], and [42]). Second, the extension does not handle the case of concurrent downloads from the
same tab (e.g., multiple downloads from the same webpage). Third, the extension works only when
the checksum and the direct link to the file are on the same page; for instance, the case where a
download link redirects to a page with an automatic download based on a meta or iframe element
is not supported. Similarly, it does not support the case where the checksums are in a separate file
(e.g., .md5, .shasum, .sig) linked on the download page.

5 CONTROLLED USER EXPERIMENT

To better understand how Internet users handle file integrity verification, we conduct an in-situ ex-
periment with 40 participants and an eye-tracking system. More specifically, we aim at answering
the following research questions:

• (RQ1) Do users thoroughly verify checksums and how do they proceed?
• (RQ2) Can users be fooled by replacing characters in the middle of the checksum (i.e., partial

preimage attack)?
• (RQ3) Does automating the checksum verification improve general usability metrics?

Eye-tracking has been used extensively in the last decade to study usability of new services,
programs or mobile apps, as it enables the collection of accurate objective measurements of where
the user looks on the screen without obtruding or disturbing their action [43]. The two metrics we
extract from this experiment are the total number of fixations and the total dwell time. Fixations
are indicative of the amount of processing being applied to objects at the point-of-regard [44]. A
longer dwell time indicates difficulty in extracting information, or it means that the object is more
engaging in some way [45]. Our hypotheses were that some participants would not thoroughly
check the checksums (fixating only parts of them) and that participants who checked thoroughly
the checksums would have to produce more fixations (and spend more time fixating) in the part
of the user interface where these sequences were displayed.

ACM Transactions on Privacy and Security, Vol. 24, No. 1, Article 4. Publication date: September 2020.

4:12 A. Meylan et al.

The experiment was split in two phases, as detailed in Section 5.3. During the first phase, we
asked participants to verify manually the checksums of four downloaded apps (this was addressing
RQ1 and RQ2). In the second part of the experiment, we activated a browser extension that verifies
the integrity of the downloaded files based on their checksums (this was addressing RQ3). We
chose not to randomize the presentation order of these two parts as we considered that seeing the
messages of the browser extension could have revealed the main topic of the experiment. With
hindsight, we realize that this design also has drawbacks that we report below in Section 5.4.4.
The experiment was approved by our institution’s ethics committee.

5.1 Participants

We recruited the participants of our experiment from a student population through flyers dis-
played on two university campuses (i.e., UNIL and EPFL in Lausanne, Switzerland). To sign up for
the experiment, potential subjects had to fill an online screening questionnaire first. In this ques-
tionnaire, they were asked about their basic demographic information (age and gender), major
field of study, knowledge of checksums (i.e., “Do you know what the elements circled in red are
used for and how?13 If yes, please describe it briefly in the text box below.”), technology savviness
(i.e., “Check the technical terms related to computers that you understand well: ad-blocker, digest,
firewall, VPN, etc.). Finally, we asked which was the operating system of their main computer.

We selected a total of 40 subjects (out of the 120 who completed the screener) and invited them
to participate in the experiment. The number of participants was chosen so that it provides suffi-
cient power to the statistical tests and keeps the total duration of the experimentation reasonable
(we had only one eye-tracker). The sample was selected to maximize diversity. About half of the
participants were macOS users (i.e., 21/40, that is 53%) and half Windows users (the actual break-
down in terms of operating systems (OS) among the participants who filled the screener was 56%
macOS, 41% Windows, 3% Linux). The subject pool included 40% of female subjects and it was
diverse in terms of major fields of studies, with more than 15 different majors represented. The av-
erage age of the subjects was 22.5 ±2.9. Out of the 40 subjects, 12 (30%) knew about checksums, 33
(83%) downloaded programs from developers websites and 20 (50%) from app stores, and 25 (63%)
had an antivirus installed on their computers. The experiment took approximately 50 minutes per
person to complete and the participants were compensated with CHF 20 (∼USD 20). The whole
experiment was conducted in French (i.e., the local language in Lausanne).

5.2 Apparatus

The experiment took place in a UX-lab, a small room with a desktop computer. The computer was
equipped with an eye-tracking system (maker Tobii, model X2-6014) which was sampling gaze at
60 Hz. Two cameras and a few microphones were also placed in the room to record the experiment.

Depending on the OS the participant was most familiar with (macOS or Windows), we switched
the computer that was used by the participants during the course of the experiment. Aside from
the OS, the employed apps and the layout of the windows were the same on the two different
OSes. Three windows were placed and arranged on the screen: the web browser (Chrome) that
occupied the left half of the screen, the “Downloads” folder (Windows explorer/macOS finder)
that occupied the top right quadrant, and the terminal that occupied the bottom right quadrant (see
Figure 5). Participants were asked to not change the position of the three windows, and scrolling
was disabled in the browser in order to reduce shifts in the areas of interest (AOIs) of the screen
that were displaying the checksums.

13The screenshot depicted VLC’s download page with checksums circled.
14https://www.tobiipro.com/product-listing/tobii-pro-x2-60/.

ACM Transactions on Privacy and Security, Vol. 24, No. 1, Article 4. Publication date: September 2020.

https://www.tobiipro.com/product-listing/tobii-pro-x2-60/

A Study on the Use of Checksums for Integrity Verification of Web Downloads 4:13

Fig. 5. Screenshot of the window arrangement on the computer used for the experiment (macOS). The left
half of the screen is occupied by the Chrome browser in which multiple tabs have been opened: the download
pages of the first four programs, the extension tab to activate the extension, the download pages of the next
two programs, and the questionnaire website for the exit survey. The right half of the screen is occupied by
the terminal application where the participants must type the command lines to compute the checksums
of the downloaded programs (bottom) and the “Downloads” folder (top) were the programs downloaded
from the browser are placed; the participants had to click on the icons of the downloaded programs (in that
window) to execute them.

All necessary pages were pre-loaded in the browser window in different tabs. We tampered
with the checksum on the third webpage (i.e., Transmission) for the first part of the study and the
second webpage (i.e., Audacity) for the second part of the study. All the other checksums were
correct. Based on our running hypothesis that users check only the first and last digits of the
checksum, we changed the 44 digits (out of 64) in the middle of the checksums; this means that
only the first and last 10 digits remained unchanged. This corresponds to a 80-bit attack (i.e., 20
hexadecimal digits). We assumed, as in [6], that a realistic adversary can forge, through brute-
force, a corrupted program in such a way that the first and last few digits of its checksum match
those of the original program’s checksum. In [6], the authors estimate the cost of such an attack
to be between USD 610k and USD 16B. Note that recent advances15 for computing hashes (e.g.,
GPU-based) and further optimizations (e.g., exploiting the visual similarity between digits) could
be used to further decrease the cost of the attack, not to mention the decrease in computation costs.
Note also that, as our results show, keeping the last digits unchanged is in fact not very important
as most users focus their attention on the first digits (see Section 5.4); therefore, an inexpensive
40-bit attack could probably achieve the same results.

15The work in [6] was conducted more than four years ago.

ACM Transactions on Privacy and Security, Vol. 24, No. 1, Article 4. Publication date: September 2020.

4:14 A. Meylan et al.

5.3 Procedure

First and foremost, we informed the participants that they would be recorded during the course
of the experiment (and about our data management plan, including data anonymization and re-
tention) and we asked them to sign, if they agreed, an informed consent agreement. We told the
participants that we were conducting a study on the way people download applications on their
computers and that they had to download several applications on the lab computer. We asked the
participants to behave as if they were using their own computer and we told them to not hesitate
to call the experimenter in case of doubts or problems. We also explained that the experimenter
had nothing to do with the design and implementation of the extension, therefore, the participants
could freely express negative opinions without the risk of affecting the experimenter.

Next, we asked participants several preliminary questions, mainly to confirm some of the in-
formation they provided in the screener: the OS of their computer, whether they had an antivirus
installed and whether they downloaded apps from the Internet from places other than official app
stores. Then, we asked the participants to sit at the computer, and a 13-point calibration proce-
dure for the eye-tracking system was completed. Finally, the participants were given a checklist
containing the steps to follow during the session.

First Phase. We asked the participants to download from the official website and execute/install
four different programs (in this specific order): VLC, Handbrake, Transmission, and Android Stu-
dio. Specifically, for each application, the participants were asked to:

(1) Download the application. For the sake of simplicity, the download webpages were already
opened in individual tabs of the web browser.

(2) Compute the checksum of the downloaded program and compare it to that specified on the
webpage. The participants were provided with the exact command to type in the terminal,
e.g., clear ; shasum -a 256 Handbrake-1.1.0.dmg for macOS.16 All the checksums
were SHA-2 with 256 bits.

(3) Run the program and report some information on the instruction leaflet: program ver-
sion and copyright years found in the “About” box (macOS) or digital certificate issuer
(Windows). The purpose of this last step was to avoid calling too much attention to the
checksum verification as being the core of the experiment.

Second Phase. We asked the participants to activate the extension (by clicking on a button in the
fifth tab of the browser), and to download and run/install two additional applications, i.e., RealVNC
and Audacity, in this order. We asked the participants to perform the same steps as in the first phase,
except from the manual checksum verification that was automated by our browser extension. The
first application’s checksum was correct, resulting in the display of a confirmation message by
the browser extension, whereas the second one was incorrect, hence resulting in the display of a
warning message (see the top and bottom right of Figure 3, respectively). The terminology used in
the messages was inspired by the instructions found on the download pages of popular programs
(e.g., Ubuntu).

Finally, we asked the participants to fill a short online questionnaire to get feedback about their
perception of the manual verification of checksums and of the browser extension, satisfaction with
the extension and net promoter score.17

16The clear command is used to ensure that the checksum is always displayed at the same location on the screen, for

eye-tracking purposes.
17See https://en.wikipedia.org/wiki/Net_Promoter, last accessed: Dec. 2019.

ACM Transactions on Privacy and Security, Vol. 24, No. 1, Article 4. Publication date: September 2020.

https://en.wikipedia.org/wiki/Net_Promoter

A Study on the Use of Checksums for Integrity Verification of Web Downloads 4:15

Fig. 6. Sample subject gaze heat maps captured by the eye-tracking system on macOS.

Fig. 7. Areas of interest (AOIs) used for the checksums (a) displayed in the terminal and (b)/(c) on the web-
page. For Transmission (c), the mismatch spans from the end of sub-AOI 1 to the beginning of AOI 4 (dashed
box).

5.4 Results

We describe and analyze the results related to the manual checksum verification (first phase) and
report on the usability and effectiveness of the browser extension (second phase).

In order to study the gaze behavior, in our analysis, we surrounded the parts of the UI that
displayed the checksums, and we labeled each area of interest (AOI). Unfortunately, we had to
remove eye-tracking recording for one participant due to corrupted data.

5.4.1 RQ1. From a qualitative analysis of the fixation heatmaps of the participants looking at
the AOIs that contained the checksums, we could observe three distinct behaviors: (a) some par-
ticipants produced extensive fixations throughout the sequence of characters (i.e., the checksum)
covering most/all of the sequence; (b) other participants produced fewer fixations but still “sam-
pled” the sequence at several points from beginning to end; (c) finally some other participants
produced fewer fixations in the AOIs, typically pointing to the beginning and the end of the se-
quence. Examples of these three behaviors can be seen in Figure 6. While the first two behaviors
typically led to identifying the incorrect checksum, the third was typically associated with not
identifying the incorrect checksums. This was confirmed by our quantitative analysis presented
below.

To understand whether all the digits of the checksum were treated equally by the participants,
we further subdivided the area where the checksum is displayed in four sub-AOIs, both in the ter-
minal and in the webpage (see Figure 7), and measured differences of the total number of fixations

ACM Transactions on Privacy and Security, Vol. 24, No. 1, Article 4. Publication date: September 2020.

4:16 A. Meylan et al.

Fig. 8. Boxplot-representations of the distributions of the participants’ (a) number of fixations and (b) total
dwell time across the four sub-AOIs covering the checksums of the terminal in the four verification tasks. The
distributions are displayed across all the participants (left), across participants who detected the mismatch
and stopped (middle), and across participants who did not detect the mismatch and continued (right).

Table 1. Wilcoxon Signed Rank Tests of the Number of Fixations
within the Four AOIs Covering the Checksums in the Terminal

AOIs (Term.) 1 2 3 4
1 − 445∗∗ 756∗∗∗ 773∗∗∗

2 − − 709∗∗∗ 688∗∗∗

3 − − − 518∗∗∗

4 − − − −
Due to ex aequos in the data, the p-value is an approximation.
∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.

falling in each of these areas. As the assumptions for parametric inferential statistics were violated,
we used nonparametric statistics for the subsequent quantitative analysis.18

We conducted a Friedman test of differences among repeated measures to compare the total
number of fixations that fell in each of the four sub-AOIs of the checksum displayed in the terminal.
There was a significant difference in the scores: Term 1 - M = 25.15, SD = 13.11; Term 2 - M =
21.92, SD = 13.96; Term 3 - M = 13.92, SD = 9.55; and Term 4 - M = 10.58, SD = 6.99; χ 2(3) = 77.32,
p < 0.001. Six Wilcoxon signed rank tests with continuity correction were conducted to make
post-hoc comparisons between AOIs. All the tests indicated that there was a significant difference
between the number of fixations falling in each terminal AOI. We include the detailed results of
the tests and the boxplot of the distribution of fixations for each terminal AOI, in Figure 8 and
Table 1. These results suggest that the attention given to the digits of the checksum is highest at
the beginning and decreases as we progress in the sequence. This means that a partial pre-image
attack should focus on keeping the first digits of the checksum unchanged.

5.4.2 RQ2. We observed that 15 (38%) of the participants did not detect the mismatch (for Trans-
mission) between the checksum displayed on the download webpage and the checksum computed
from the downloaded file (displayed in the terminal). This constitutes a substantial proportion of
our subject pool. This number could be higher in real life as the subjects are likely to be more care-
ful in a controlled environment compared to a situation where they are eager to run the program

18Concerning the total number of fixations, the Shapiro-Wilk normality tests were close to rejection: Term 1 - (W = .95, p =

0.085), Term 2 - (W = .94, p = 0.027), Term 3 - (W = .94, p = 0.037), Term 4 - (W = .92, p = 0.008) and the assumption of

homoscedasticity was violated when using the Modified Levene’s Test (F = 6.23, p < 0.001). The conclusion was similar

for the total dwell time.

ACM Transactions on Privacy and Security, Vol. 24, No. 1, Article 4. Publication date: September 2020.

A Study on the Use of Checksums for Integrity Verification of Web Downloads 4:17

they just downloaded. Furthermore, we explicitly asked the subjects (in the instructions) to verify
if the checksums on the webpage and in the terminal were identical. We did not find a signifi-
cant difference in the detection rate for participants who had prior checksum knowledge (p = 1,
Fisher’s exact test). We hypothesize that participants with prior knowledge understand better the
importance and functioning of checksums but, at the same time, they might be more sloppy in
their verification as they know that an accidental modification would very likely change the first
digits of the checksum. The same result was observed for the previous results on RQ1.

To study more quantitatively if some behavioral differences existed between those who detected
the mismatch and those who did not, we operated a post-hoc split of the participants. We focused
our analysis on the terminal window. Figure 8 shows the distribution of the number of fixations
and dwell time, for each of the four sub-AOIs in the terminal, across the participants who detected
the mismatch and those who did not. A Wilcoxon rank sum test was conducted to compare the
total number of fixations in the AOIs for the two groups of participants. The values of the task
with the incorrect checksum were not considered in order to compare the usual behavior. There
was a significant difference in the number of fixations for participants who detected the corrupted
checksum (M = 12.47 fixations, SD = 5.01) and those who did not (M = 3.88 fixations, SD = 2.09);
W = 338.5, p < 0.001. Furthermore, the same test was conducted to compare total dwell time in
the AOIs for the two groups. There was a significant difference in the amount of time spent in the
checksum AOIs for participants who detected the corrupted checksum (M = 15.63 seconds, SD =
9.50) and those who did not (M = 3.97 seconds, SD = 2.60); W = 333, p < 0.001.

These results suggest that participants who detected the corrupted checksum fixated the check-
sums significantly more frequently and spent significantly more time than those who did not. The
observed ratios between the two behaviors were approximately 4:1. This analysis was also ex-
tended to tasks 1, 2, and 4 for the two groups of participants. We observed the same difference
as for Task 3; this reveals that those who were thorough were consistently so, during the entire
experiment.

To better understand how users conduct the checksum verification process, we extracted and
analyzed the gaze movements between the sub-AOIs of both the checksum displayed in the ter-
minal and the checksum displayed in the webpage; as the verification process consists in making
sure that these two alphanumeric strings are identical, the participant had to look alternatively
at the checksum in the terminal and at the checksum in the webpage. This is due to the fact that
people can only hold so much information in their working memory. To perform this analysis,
we relied on the same sub-AOIs as before (see Figure 7) and computed the number of transitions,
with respect to participants fixations. We define as a transition one or multiple fixations in one of
the AOIs followed by one or multiple fixations in a different AOI. All fixations outside of the AOIs
were ignored: If a participant fixates in Term 1, then somewhere else on the screen, and finally in
Web 1, this counts as a transition from Term 1 to Web 1.

We look at the transitions between the different AOIs. Figure 9 depicts the matrices of tran-
sition between AOIs for the tasks with a correct/incorrect checksums (top/bottom) and for the
participants who detected/did not detect (left/right) the mismatch for Transmission. A first gen-
eral finding is that participants start by looking at a chunk of the checksum in one window (ter-
minal or webpage) and then check by looking at the corresponding chunk in the other window
(diagonal in the top-right and bottom-left quadrants of the transition matrices, e.g., “Term i ↔
Web i” transitions). Note, however, that some participants look at multiple chunks of the check-
sum successively in the same window (sub-diagonal in the top-left and bottom-right quadrants,
e.g., “Term i → Term i + 1” transitions). It can also be observed that the participants who did not
detect the mismatch stopped the verification process in the first parts of the checksums; this con-
firms our previous analysis. In the case where the checksum is incorrect (right sub-figures, i.e.,

ACM Transactions on Privacy and Security, Vol. 24, No. 1, Article 4. Publication date: September 2020.

4:18 A. Meylan et al.

Fig. 9. Transition matrices representing the average number of transitions from one AOI to another. The row
represents the origin of the transition and the column the destination. The names of the AOIs are those from
Figure 7. The top matrices correspond to the tasks with a correct checksum (i.e., VLC, Handbrake, Android
Studio) and the bottom matrices correspond to those with an incorrect checksum (i.e., Transmission). The left
matrices correspond to the participants who detected the mismatch for Transmission and the right matrices
correspond to those who did not. The darker a cell, the higher the number of transitions.

Fig. 10. Cumulative distribution functions of the number of back-and-forth transitions between the terminal
and the webpage.

Transmission), the behavior of the participants who did not detect the mismatch does not change
substantially; there is no substantial difference between Figure 9(b) and Figure 9(d). For the partici-
pants who did detect the mismatch, however, the difference is substantial: Indeed the participants’
fixations gravitate around the first two AOIs (the mismatch started at the end of AOI 1) with many
transitions between these two.

We further look at the distribution of the number of back-and-forth transitions (i.e., transitions
from one window to another and back to the original window) between the AOIs in the terminal
and those in the webpage across participants, as depicted in Figure 10 (cumulative distribution
function). This metric reflects the cognitive load of the participants. It can be observed that the
number of back-and-forth transitions is substantial, with a median number of around 10 and a
maximum of 26 for the participants who thoroughly checked the checksums (i.e., those who de-
tected the mismatch for Transmission); this number is substantially lower for those who did not.
Therefore, we can observe that identifying the mistake required more effort (and time). While

ACM Transactions on Privacy and Security, Vol. 24, No. 1, Article 4. Publication date: September 2020.

A Study on the Use of Checksums for Integrity Verification of Web Downloads 4:19

Fig. 11. Cumulative distribution function of the participants’ total dwell time on the popup window of the
browser extension.

participants who successfully identified the mismatch were thorough in checking the entire se-
quence of characters and numbers, those who did not identify the mismatch stopped right after
the first few characters, perhaps thinking that if the beginning of the sequence matched so must
the rest of it.

5.4.3 RQ3. We now report the results of our user experiment related to the browser extension
carried out in the second phase. As explained in Section 5, in order to study user reaction to the
messages displayed by the extension and to collect user feedback, in the second phase of our
user experiment, we asked the subjects to activate the extension and to download two programs
(RealVNC and Audacity) from the corresponding official websites. The checksum of the second
download (Audacity) was incorrect.

During the experiment, 40% of the participants stopped when shown the warning message for
the (corrupted) Audacity download. For those who did not, the reason they reported most fre-
quently (in the exit survey) was that they tend to ignore popups shown on webpage systemati-
cally because they are too frequent and often irrelevant or even scams. Among the participants
who did stop, 50% removed the download file: 37.5% of them clicked on the dedicated “delete” link
embedded in the warning message and the remaining 62.5% manually removed the file.

In order to further analyze the participants’ interaction with the popup window of the browser
extension, we measured the participants’ total dwell time on the popup; the cumulative distribution
function across the participants is depicted in Figure 11. As expected, the median dwell time is
higher for the incorrect checksum than for the correct ones. This could be explained by the fact
that the participants tend to devote more time/attention to warnings (identified in many system-
conventions with the orange warning icon). Surprisingly, in some cases the dwell time is lower for
the warning (i.e., for the incorrect checksum); this could be explained by an habituation effect, as
the incorrect checksum was always shown after the correct one in our experiment (as described
in Section 5.3).

We further defined sub-AOIs in the extension popup window (see Figure 12) and we measured
the breakdown of the dwell time across them. The boxplot representations of the distributions of
dwell time are depicted in Figure 13. It is interesting to notice that participants did spend more
time on the status text, particularly when the error message was displayed. This indicates that
the design was effective in capturing the participants’ attention on the component that offered
informative content to understand the status and behavior of the plugin.

In the exit survey, the participants reported an average satisfaction score of 5.2 ±1.4 (on a scale
from 1 to 7).19 Furthermore, the participants reported an average desirability score of 4.6 ±1.9

19For all the self-reported scores, we used a 7-level Likert scale.

ACM Transactions on Privacy and Security, Vol. 24, No. 1, Article 4. Publication date: September 2020.

4:20 A. Meylan et al.

Fig. 12. Screenshot of the extension popup when the verification succeeds (i.e., correct checksum; top) and
fails (i.e., incorrect checksum; bottom). The experiment was conducted in French; an English version is avail-
able in Figure 3.

Fig. 13. Boxplot representation of the distribution of dwell time on the different AOIs on the extension popup.

(“Should the extension be available for download, how likely would you be to use it?”), with 55%
of the participants answering positively, and an average net promoter score of 4.5 ±1.9 (“How
likely would you be to recommend it to a friend or relative?”), with 55% of the participants an-
swering positively. In these questions, the comparison was implicit to the status-quo offered by
the command-line interface that the participants tested in the first phase.

Another observation from the user experiment was that 26/40 participants (65%) could not ex-
plain the goal of integrity verification in the exit questionnaire (before the debriefing). This reveals
the inability of non-technical users to grasp the concept behind checksum-based integrity verifi-
cation. This was confirmed by the following remark made by one participant: “Sur mon ordinateur
personnel, j’aurai quand meme téléchargé le fichier car l’antivirus de l’ordinateur ne m’a prévenu
d’aucune menace et le site web à partir du quel j’ai téléchargé le fichier me semblait fiable (On my
personal computer, I would have downloaded the file anyway as the antivirus on the computer did
not notify me about any threat and the website from which I downloaded the file seemed trustwor-
thy).” This remark also highlights a clear misunderstanding regarding the location of a website’s
subresources.

Finally, the participants gave us feedback on the messages displayed by the browser extension.
The main comments were the following: The terminology used in the message was too technical
or unclear (7 participants): “Plutôt sobre je trouve bien mais pour un neophyte, il n’est pas très clair
par rapport à son rôle. (It is rather sober I think but for a newbie it is not clear enough in relation to
its role)”; the popup did not sufficiently catch their attention (4 participants)–they suggested using
larger icons and using colors for the text messages themselves or even to remove the icons–: “Sans
le petit logo vert, qui fait penser à celui d’un antivirus, c’est personnellement le genre de message auquel
je fais très rarement attention. (The little green logo, which makes me think about an antivirus, should
be removed as it is the kind of message that I would rarely pay attention to.)”; the design of the skip
button allowed participants to easily skip it (2 participants): “Pour éviter que le message ne soit fermé

ACM Transactions on Privacy and Security, Vol. 24, No. 1, Article 4. Publication date: September 2020.

A Study on the Use of Checksums for Integrity Verification of Web Downloads 4:21

tout de suite, il faudrait peut-être bloquer le reste de la navigation tant que le message n’est pas fermé.
Ou le laisser ouvert obligatoirement pendant quelques secondes. (To prevent the user from immediately
dismissing the message the message, it would be necessary to block the user from pursuing navigation
until the message is closed. Or to force the message to remain open for a few seconds).”. Interestingly,
during the informal feedback with the experimenter, several participants reported that they are,
in general, annoyed by popups displayed within webpages and tend to ignore them.20 Also, they
mentioned that a warning originating directly from the browser in a standalone window would
have been more effective. Finally, one participant reported that “[L’avertissement] est clair et bien
expliqué, peut-être qu’un message plus ‘effrayant’ inciterait plus l’utilisateur à supprimer le fichier
([The warning] is clear and well explained, maybe a more ‘frightening’ message would push the
user more to delete the file)”.

During the experiment, we also received positive feedback on the extension. Several participants
commented positively that the design of the message and the terms used were clear: “Le message est
assez clair et explique bien pourquoi le fichier devrait être supprimé (The message is rather clear and
it explains well why the file has to be deleted)”, “Ce message apparaît de manière assez claire dans la
page, donc cela permet à l’utilisateur d’être au courant sur ce qu’il télécharge. (This message appears in
a clear way on the page. This allows the user to be aware of what she is downloading.)”. Interestingly,
one participant stated: “[L’avertissement] est également assez clair, j’y aurais fait attention hors
du cadre de l’expérience. ([The warning] is rather clear, I would have paid attention to it outside
of the context of the experiment)”. This suggests that the browser extension would be useful in
practice. The study helped identify several areas for improvement of the design, namely around
the behavior of the extension and the messages displayed to encourage the users to delete the
downloaded file in case of mismatch. We took some the aforementioned comments into account
and refined the browser extension for the follow-up experiment described in Section 6.

5.4.4 Limitations. Like any lab study, the experiment suffered from low ecological validity.
Also, the prescriptiveness of the sequence of tasks that we gave to participants reduced the ability
to observe participants’ spontaneous behavior when downloading files. Furthermore, we might
have introduced a learning bias by choosing not to randomize the presentation of the first and
the second part of the study, and the correct vs. incorrect checksums within each part. Finally,
the participants of the lab study were all university students and many were technically literate
as reported in Section 5.1. Hence, we might expect a smaller share of users to understand and use
checksums in the general population than the share identified in the presented results.

5.4.5 Data Availability. The eye-tracking data is available online.21 The dataset is a 40 GB Tobii
Pro Studio (version 3.4.8) archive in the .nas format. The archive includes all the screen recordings;
the sound and the webcam streams are not included for privacy reasons. The archive is shipped
with a spreadsheet that contains the anonymized responses to the screener and exit questionnaires
and the notes taken by the experimenter. The IDs in the spreadsheet corresponds to the participant
number and recording number in the Tobii dataset.

6 USER EXPERIMENT IN THE WILD

To complement the insights of the in-situ experiment with data from a real-world deployment and
therefore to increase the ecological validity of our study, we conducted a second user experiment.
The goals of this experiment were:

20Showing fake (security) warnings in webpages to push users to download and install malicious programs is a common

practice, e.g, fake antivirus.
21https://drive.switch.ch/index.php/s/hC4ayTNXqmPZptS.

ACM Transactions on Privacy and Security, Vol. 24, No. 1, Article 4. Publication date: September 2020.

https://drive.switch.ch/index.php/s/hC4ayTNXqmPZptS

4:22 A. Meylan et al.

• To estimate the number and types (e.g., Microsoft Office or PDF document, image, binary
executable) of files Internet users usually download on the Web.

• To quantify the number of websites that regular Internet users usually visit, which offer
checksum-based integrity verification for the downloads.

• To collect data on how people would normally react to checksum verification in the wild.
• To observe users’ responses to the browser extension that we presented in the lab study.

Therefore, we posed the following research questions:

• (RQ4) How often do users download files from the Web and what types of files do they down-
load?

• (RQ5) What is the prevalence and the current practices of checksums included in download
webpages?

• (RQ6) What do Internet users do most frequently + when they encounter a visible checksum?
• (RQ7) Would users feel more secure if they could use a system that automates parts of the

verification process?

To answer these questions, we conducted a medium-scale analysis of web users browsing and
download habits and of the associated security-related behaviors.

6.1 Methodology

In order to capture data on how users behaved when facing a download with checksum infor-
mation and how they reacted to the extension warnings, we followed a refined Experience Sam-
pling Method (rESM) [46]. Experience Sampling involves asking participants to report on their
experiences at specific points throughout the day. The method is regularly applied in studies of
Human-Computer Interaction [47–49]. A typical drawback of the method is that it could be con-
sidered invasive by participants if they are sampled at random times. This is why, in recent years,
researchers have proposed to refine the method by modeling the participants’ context [46, 50].
The goal of these questionnaires was to: (a) collect data on whether people noticed checksums on
webpages; (b) whether they understood how to use the checksums (i.e., how checksums work);
(c) whether they were going to compute and verify the checksums or take other security precau-
tions such as scanning the file for viruses; (d) record self-reported measure of security of their
system. The questions of the rESM are available (in French) in Figure 14.

These questionnaires were presented to the participants of the study only if any one of the
following criteria were met: (a) the participant triggered a download from a webpage that does
not contain a checksum; (b) the automated verification of a checksum succeeded; (c) the auto-
mated verification of a checksum failed; or (d) the participant encountered a checksum but did not
download any file from the webpage. In the situation (a), (b), or (c), the rESM questionnaire was
displayed immediately after the completion of either the download or the verification. A fixed de-
lay of 2 seconds was added after the page was loaded (i.e., JavaScript load event), before presenting
the questionnaire following trigger (d). This means that the checksum was visible on the page for
a few seconds before the questionnaire was shown. In order not to overload the participants, we
also established that the mini-questionnaires should not be triggered more than once per day on
the same participant, per type of event.

Given that the extension was designed to alter the natural online browsing behavior by making
users more careful with regard to downloads, we included in the experimental design a control
group. In the control condition, the extension would be collecting data but not intervening during
downloads. Each participant was randomly assigned (with probability 1/2) to one of two groups.
The control group did not have the checksum verification result in the user interface (see Figure 15).

ACM Transactions on Privacy and Security, Vol. 24, No. 1, Article 4. Publication date: September 2020.

A Study on the Use of Checksums for Integrity Verification of Web Downloads 4:23

Fig. 14. Questions prompted by the browser extension when a download with a checksum on the webpage
was detected. The first two questions were omitted in the case of a download without a checksum on the
webpage. Top-left: Did you notice this sequence of letters and numbers on the page [checksum string]? [Yes/ No/
Not sure]. Top-right: Would you do anything with this sequence of letters and numbers? If yes, what? [free text]
Bottom-left: Are you going to do anything with the file you just downloaded [filename] before opening/executing

it? [free text] Bottom-right: How secure is your computer in your opinion? [Likert 7-levels from Not secure to
Very secure].

Fig. 15. Screenshot of the user interface, in French, of the extension (used in the in-the-wild experiment).

ACM Transactions on Privacy and Security, Vol. 24, No. 1, Article 4. Publication date: September 2020.

4:24 A. Meylan et al.

The experimental group had, based on the user feedback collected in the in-situ experiment, a
revised messages and layout of the verification result popup (see Figure 15). Adapted questionnaire
messages were displayed when a verification was made. For both groups, the data collection of
the browsing and download history was activated. Both groups received the rESM questionnaires
when the specific browsing conditions were met.

Finally, as we foresaw a small occurrences of downloads for which participants might incur into
a checksum, we designed an exit activity that participants had to complete before collecting their
financial incentive for the experiment. We designed a webpage with links to two apps they had
to install on their computers. The webpage contained checksum so that it triggered our browser
extension. For one app, the checksum was correct, while for the other app, it was incorrect; the
ordering of the apps (correct/incorrect) was randomized to avoid presentation biases. This was
intentionally designed to trigger downloads with valid checksums and downloads which could
have been potentially tampered, and analyze reactions.

6.1.1 Apparatus. In order to capture the browsing and download behavior of the users and
the answers of the rESM questionnaires, we developed a system consisting of two parts: a browser
extension—to be installed in the participants’ browsers—and a web server that communicated with
the extension.

Chrome Extension. For this experiment, we adapted the browser extension that we initially used
in the lab experiment (see Section 4.2). We added the following new functionalities:

• It captured and stored all browsing and download activities of the user. This consisted of
the visited/downloaded URL, the timestamp, and the unique ID assigned to each participant
during the installation process. This data was stored on the local machine and regularly
uploaded to our servers.

• It presented participants with the short aforementioned questionnaire. From a UI perspec-
tive, the questions were also displayed in popup windows with the question at the top and
the answer options (or text field) right below.

In addition to these two functionalities, we updated the text of the popup messages according to
the feedback we received during the lab study. Particularly, we changed the mechanism by which
users were informed about non-matching checksums: while in the lab study we only displayed
a warning message, for this experiment, the extension was deleting the potentially dangerous
downloaded file and displaying a warning message. Basically, while for the lab experiment the
participant could easily ignore the popup, in the field deployment we took a safer approach for
which the user was actually required to read the warning and to explicitly click on a link if they
wanted to bypass the verification.

The code of the revised browser extension was structured and implemented using the Google
developers guidelines and the Chrome extension APIs. The extension had three main functions.
Checksum verification are usually proposed for files that can be executed on the computer. How-
ever, according to our adversary model, any file hosted on a different server can benefit from an
integrity verification (i.e., Microsoft Office or PDF documents [CVE-2017-0199], [51]). To collect
relevant information, the extension monitored the Chrome download manager and sent back all
information available in the downloadItem object (Object available through the Chrome Extension
API).

Server. We set-up a Django web server with which the browser extension synchronizes. Addi-
tionally, the server contained a page with a step-by-step setup guide to install the extension and a
dashboard for the researchers to monitor the progress of the study. Finally, the same server hosted

ACM Transactions on Privacy and Security, Vol. 24, No. 1, Article 4. Publication date: September 2020.

A Study on the Use of Checksums for Integrity Verification of Web Downloads 4:25

the page we used for the exit task, where we asked participants to download two apps, one for
which the checksum was correct and the other for which the checksum was (purposely made)
incorrect.

6.2 Participants

To take part in the 4-month long study, a total of 349 potential participants enrolled online for the
experiment and were assessed for eligibility. These individuals volunteered to be part of a subject
pool (consisting of approximately 8,000 subjects, most of whom were students) for behavioral ex-
periments at the University of Lausanne (UNIL). A specialized unit at our institution, called Labex,
managed the subject pool, took care of the randomization and enrollment processes, automated
the transfers of financial incentives, and kept secure the contact information of the participants
of the study. We collected demographic data through a short survey that also served to check eli-
gibility for the study (i.e., a screener). The questionnaire verified the browser type used and only
allowed Chrome users on desktop or laptop computer to continue. We also required the user to
be at least once a week on their computer to join the experiment. If they corresponded to this
profile, they were asked additional demographic questions and invited to participate. The main
reason why potential participants were refused is that they only attempted to fill the screener
from a mobile device and did not start the questionnaire again from Chrome on their computers.
At the end of the screening process, a total of 152 people were selected to participate in the exper-
iment. However, during the study, 18 participants dropped out (11.8% attrition rate), thus leaving
us with a total of 134 that left the browser extension active for the 4 months of the study. Out of
the 134 participants who completed the study, 57% (or 76) were female. The age distribution was
as follows: 84% (113) were aged between 18 and 23, 15% (20) were between 24 and 30, and 1% (1)
were over 30. We extracted the OS used from the user-agent string of the participant. About half
of the participants were macOS users (45% or 60) and the other half Windows users (55%, or 74).
A majority of users were from the Université de Lausanne (UNIL) (57%, or 77), the second group
was from Ecole Polytechnique Fédérale de Lausanne (EPFL) (33%, or 44) and the last 10% (13) came
from different schools in the French-speaking regions of Switzerland. A total of 134 participants
remained active throughout the whole 4 months of the study. Concerning the two groups of the
study, 44% of the participants (59) were assigned to the experimental group and 56% (75) to the
control group. The results in the remainder of this section refer to the participants who remained
active. However, concerning the last part of the study, only 117 participants completed the exit
task. Therefore, when we will describe this part of the experiment, the statistics refer to only the
participants who completed this last activity.

6.2.1 Procedure. The screening process and the experiment were conducted in French. Regis-
tered subjects on the Labex panel received an e-mail invitation to fill out the online screener. The
first page of the screener contained a description of the study and a checkbox where participants
could provide their informed consent. The consent form also described the goal of the study (i.e.,
an observation of the browsing and download behavior), the condition of participation, the data
being collected (and the associated data management plan), the procedure to withdraw from the
study, and information about the financial incentive. In addition to selecting the right participants,
the screener questionnaire was used to set up participants for the study. At the end of the survey
—and only for qualifying respondents—a request was made to our server to be assigned a partic-
ipant ID. The server created a new ID in the users table and returned that to the survey platform
that stored the ID together with the other responses of the screener. This process was used to sep-
arate the personal identifiable information of the participants (or PII) from the collected dataset.

ACM Transactions on Privacy and Security, Vol. 24, No. 1, Article 4. Publication date: September 2020.

4:26 A. Meylan et al.

Also, this process would assign each new participant at random to the experimental or the control
group.

Once the survey platform received the ID, the participant was automatically redirected to the
extension installation instruction page.22 The page contained a link to the extension on the Chrome
webstore and step-by-step guide on how to complete the setup. Participants also received the same
information via email. The page also provided information on how to pause the data collection
of the extension, if the user wished to do so (e.g., for a browsing session that they might have
wanted to exclude from the data collection). Participants were also instructed to contact us via
email if they wished to delete a browsing session that had been already captured. On startup,
the extension verified two conditions. The first one was checking that the user ID existed in the
database. This variable was saved using synchronized storage from the Chrome API. In the event
that the participant would start using Chrome on another computer and would log in his Google
account, the extension would be installed on the new computer and the participant ID would be
automatically added. This user ID also determines if users would see the download verification
messages. If no ID was registered in the storage, the extension would use a JavaScript prompt to
ask the user to enter their ID (communicated by email and available on their installation page).
We chose to use a JavaScript prompt because it is an intrusive way of communication and we
did not want a participant to start a browsing session without being identified. The second check
was to ensure that the extension would be able to access the downloaded files in order to verify
checksums. We used a less intrusive way than the prompt to communicate this setup process to
the user. If the URL file access was not allowed, the extension would open a page where it explains
how to grant this permission to the extension.

Once the extension was correctly installed on the participant’s computer, the only situation
in which a user would interact with the extension would be either during a verified download
(for the experimental group) or when an rESM questionnaire was triggered (for both groups) (see
Section 6.1).

The participants were required to keep the extension installed on their main computer for a
duration of 4 months. During this time, we monitored the server health. A secondary server was
tasked to contact our server every minute to ensure availability. Also, every day at 12 pm, the
main server sent an email to our team containing the last 24h graphs about CPU, memory, and
disk usage. The mail also included the IDs of participants who did not sent any data to the server for
the last 5 days. When faced with such inactive participants, we contacted them by mail to ensure
that they were still using the plugin on their personal computer. During the 4 months of the study,
we contacted a total of 77 participants. Of these, 59 reactivated their extension and continued
the study while 18 participants dropped out of the study (11.8% attrition rate). The feedback we
received from the inactive participants to explain their inactivity—when we contacted them —was
very diverse. The most common reason was that they were taking a few days off their computer,
using only their smartphone/tablet instead for browsing the Web. The other reasons included not
having Chrome set as their default browser, the use of a secondary computer (e.g., a desktop for
gaming), or even the purchase of a new computer.

At the end of the 4-month-long experiment, we asked participants to complete a final task. They
received instructions to visit one page located on our server. The page contained instructions
to download and install two apps on their computers. Once installed, they had to enter their
participant ID. This allowed us to collect feedback on the extension UI and see if they proceeded
to install the app with the incorrect checksum. Participants received CHF 20 (∼USD 20) for their

22The original version of the webpage [French] is available at https://checksum.unil.ch/install/, last visited December 2019.

Archival version at https://osf.io/za6j5/, last visited December 2019.

ACM Transactions on Privacy and Security, Vol. 24, No. 1, Article 4. Publication date: September 2020.

https://checksum.unil.ch/install/
https://osf.io/za6j5/

A Study on the Use of Checksums for Integrity Verification of Web Downloads 4:27

participation in the experiment. In addition, all participants took part in a raffle of four prizes of
CHF 100 at the end of the study.

6.2.2 Measures. In order to answer our research questions, we relied on a combination of ob-
jective observations (logged by the browser extension) and self-reported data (collected through the
rESM surveys). To address RQ4 and RQ5, for every webpage visited by a participant, the exten-
sion sent back a summary of the webpage to our server (i.e., a sanitized URL). On our server, we
collected metadata about the subject (IP address of the participant, user-agent string, time of visit,
and participant ID) and also, the fully qualified domain name (FQDN) of the page visited. It was the
extension which took care of transforming the full URL into FQDN; for example, it transformed
“https://www.google.com/search?q=cat” into “www.google.com”. We did this transformation
to avoid the collection of password or security token encoded in the URL. However, if a webpage
visited would contain a checksum or a hashing algorithm name, the full URL and the related check-
sums information were saved on our server. We chose to keep the full URL so we could inspect the
webpages that are false positive and refine our checksum selection criteria. The data was accessi-
ble only to the researchers of this study and will be deleted after the publication of the results, at
the latest, one year after the end of the experiment. We mentioned these points when collecting
consent from the participants at the beginning of the experiment (the participants had to sign a
consent form).

In terms of self-reported data for RQ6, as the extension detected a checksum, the digest on
the page was highlighted and the following two questions presented to the participant (see top
questions of Figure 14):

(1) “Avez-vous remarqué cette séquence de lettres et de chiffres [checksum] sur la page ?” (Did you
notice this sequence of letters and numbers on the page: [checksum string]? [Yes/No/Not
sure]);

(2) “A votre avis, à quoi sert cette séquence de lettres et de chiffres ?” (What do you think this
sequence of letters and numbers is used for? [free text]).

As explained in Section 6.1, in order not to overload the participants, we triggered these mini-
questionnaires at most once per day, per type of event, per participant.

In terms of the objective data we stored concerning the downloaded files, the three main pieces
of data that were relevant for RQ6 were (1) the MIME type (e.g., application/pdf for PDF docu-
ments) of the downloaded file, (2) the address that initiated the download (i.e., the page on which
the user clicked to trigger the download), and (3) the address that the download was being made
from after all redirects (i.e., the address from where the data was downloaded). The MIME type is
a data format identifier that allows us to know if the downloaded file is potentially able to make
modifications on the computer, thus of interest for an attacker. The association of the address that
initiated the download and of the address that served the download allows us to determine whether
the downloaded file is stored on an external server or not. Note that this is a simple heuristic: we
compare the domain name of the server that served the webpage from where the download was
triggered with the domain name of the server that served the downloaded file. If they are different,
then we consider the download as happening on an external server. The extension was unable to
monitor what would happen to the file once the download was complete. Therefore, we had to
rely on the rESM survey to capture whether the participant was going to process the downloaded
file before executing it (see bottom-left question of Figure 14).

Lastly for RQ7, we were interested in comparing the self-reported security of the computer
between the control and the experimental group. For this reason, after each download (with or

ACM Transactions on Privacy and Security, Vol. 24, No. 1, Article 4. Publication date: September 2020.

4:28 A. Meylan et al.

Table 2. Top 20 MIME Types of the 17,400 Files Participants Downloaded during the Experiment

MIME type num. prop. [%]

application/pdf 9,677 55.61

image/jpeg 1,988 11.43

application/octet-stream 1,151 6.61

application/vnd.openxmlformats-officedocument.wordprocessingml... 883 5.07

application/zip 648 3.72

audio/mpeg 284 1.63

application/vnd.openxmlformats-officedocument.presentationml... 221 1.27

image/png 210 1.21

text/plain 194 1.11

application/vnd.openxmlformats-officedocument.spreadsheetml... 182 1.05

application/msword 174 1.00

text/html 136 0.78

binary/octet-stream 106 0.61

video/mp4 100 0.57

image/gif 99 0.57

application/x-msdownload 93 0.53

application/x-bittorrent 92 0.53

application/binary 88 0.51

application/vnd.ms-powerpoint 88 0.51

application/force-download 57 0.33

without checksum), we asked all participants to rate on a 7-level scale from “Not secure” to “Very
secure” the level of security of their computer (see bottom-right question of Figure 14).

6.2.3 Statistical Analysis. Nonparametric analysis was applied to the data considering the ordi-
nal nature of some of the observed variables. Hence, differences between security valuation across
experimental conditions were tested suing the Kruskal-Wallis test (see RQ7 below). The level of
significance was taken as p < .05.

6.3 Results and Analysis

(RQ4) How often do users download files from the Web and what types of files do they download?
During the 4 months of observation, the participants of the study visited a total of 657,608 web-
pages.23 On average, each participant visited around 50.6 webpages every day. During the study,
participants downloaded a total of 17,400 files from the Web. On average, each participant down-
loaded about 130 files, that is around 33 downloads each month. Table 2 presents the breakdown
of the different MIME types of the files downloaded by the participants of the study during the
experiment. We noticed that 7.7% of these files are executable (i.e., octet-stream, binary), and 3.7%
are compressed archives, hence files that could potentially carry malicious code. Additionally, the
large majority (55.6%) of the downloads are PDFs and office documents that could also be injected
with corrupted macros or other harmful code. During the study, a total of 17 executable down-
loads contained a checksum on the page that was verified by the browser extension. For 6 of the
17 downloads, the participants that originated the download was in the experiment group; hence,

23Note that the numbers of webpages/downloads reported in this section are total numbers, not numbers of unique web-

pages/downloads.

ACM Transactions on Privacy and Security, Vol. 24, No. 1, Article 4. Publication date: September 2020.

A Study on the Use of Checksums for Integrity Verification of Web Downloads 4:29

the browser extension presented popup messages about the verification to the users. A large pro-
portion of the downloaded files came from email attachments accessed via a webmail. The modest
number of executable files downloaded can be explained by the fact that users download the bulk
of the programs they need when they set up their computers and only a few, sporadically, after that.

(RQ5) What is the prevalence and the current practices of checksums included in download web-
pages? Of the 17,400 downloads recorded in the final dataset, 4,853 files (or 27.9%) were hosted
on a server that had a distinct domain name from the server that served the webpage of the site.
This shows that about a third of the downloaded files we recorded in this study could poten-
tially be compromised following the threat model described in this article. Similarly, we found that
923 downloads (or 5.3%) originated from a server that was not configured with HTTPS, hence al-
lowing potential attackers to modify the files while being transferred to the machine requesting
the download. Out of the 657,608 webpages visited by the participants during the study, only 153
pages (or 0.02%) contained a checksum string, and of the 17,400 downloads events in the final
dataset, 37 originated from one of these webpages. We manually inspected these webpages and
classified them into four categories: (i) 70 (or 45.7%) webpages linked executable files and refer-
ences the name of the algorithm used to generate the checksum (i.e., SHA-256, MD5); (ii) 43 (or
28.1%) were false positives (i.e., webpages that contained alphanumeric strings that matched our
regular expression but that were not checksums); (iii) 29 (or 19%) webpages linked torrent files
(we will discuss this case below); and (iv) 11 (or 7.2%) webpages contained true checksums but the
connected file was not an executable, hence the extension did not verify the integrity. For instance,
Zenodo provides checksums for PDFs,24 and Digicert for security certificates.25 Concerning the
webpages with checksum that linked torrent files, in these cases the participants visited a webpage
that contained checksum information about one or multiple files seeded through the peer-to-peer
network.26 In addition, these webpages also contained a .torrent file that could be downloaded
from the webpage that contains metadata about files and folders to be distributed, and usually
also a list of trackers, which are computers that help users of the system find each other. When
participants of our experiment downloaded torrent files from these webpages, the extension was
triggered, however it could not possibly verify the checksum as the file being downloaded from the
browser (i.e., the .torrent file) was not the one the checksum information on the webpage referred
to.

Of the 7.7% of downloads involving executable files (plus the 3.7% of downloads involving
archives), 17 downloads were downloaded from a webpage containing both the checksum and
the name of the algorithm used. These were all executable files (i.e., .exe, .dmg, or .pkg) or archives
(i.e., .zip). Finally, it is worth reporting that all of the checksums reported on the webpages we
identified in the study matched the linked resources. Table 3 reports the details of the resources
with a valid checksum that our participants downloaded during the study.

(RQ6) What do Internet users most frequently do when they encounter a visible checksum? Out
of the 153 events in which participants opened a webpage that contained a checksum and were
prompted with a rESM questionnaire, we collected 35 valid responses. These 153 events were
created by only 45 distinct participants. The participant would typically look at multiple pages with
checksum under the same FQDN during the same day and thus receive only one questionnaire.
To the first question, namely whether they noticed the checksum on the webpage, 28 (or 80%)
participants replied that they did not see the checksum, while 3 (or 8.6%) replied that they were

24See an example here https://zenodo.org/record/204969#.XfpP4db0k1J, last visited December 2019.
25See https://www.digicert.com/digicert-root-certificates.htm, last visited December 2019.
26As an example, see https://osf.io/zw7u3/, last visited December 2019.

ACM Transactions on Privacy and Security, Vol. 24, No. 1, Article 4. Publication date: September 2020.

https://zenodo.org/record/204969#.XfpP4db0k1J
https://www.digicert.com/digicert-root-certificates.htm
https://osf.io/zw7u3/

4:30 A. Meylan et al.

Table 3. Executables Downloaded by the Participants during the Study from Web Pages
Where a Valid Checksum Was Available

Filename Source address

gimp-2.10.10-setup.exe https://www.gimp.org/downloads/

RStudio-1.2.1335.dmg https://www.rstudio.com/products/rstudio/download/

R-3.5.3.pkg https://cran.r-project.org/bin/macosx/

vlc-3.0.6.dmg http://get.videolan.org/vlc/3.0.6/macosx/vlc-3.0.6.dmg

basic-miktex-2.9.7031-x64.exe https://miktex.org/download

python-3.7.2-macosx10.9.pkg https://www.python.org/downloads/

RStudio-1.1.463.exe https://www.rstudio.com/products/rstudio/download/

python-3.7.2-amd64.exe https://www.python.org/downloads/release/python-372/

VirtualBox-5.2.18-124319-OSX.dmg https://nas-webdav.epfl.ch/vpsi1arch/images_vdi/ IC_CO_IN-SC-Local/

VirtualBox-5.2.18-124319-Win.exe https://nas-webdav.epfl.ch/vpsi1arch/images_vdi/ IC_CO_IN-SC-Local/

basic-miktex-2.9.6942-x64.exe https://miktex.org/download

python-3.7.2.exe https://www.python.org/downloads/release/python-372/

winscp576setup.exe https://winscp.net/download/winscp576setup.exe

Popcorn-Time-0.3.10-Setup.exe http://mirror03.popcorntime.sh/repo/build/ Popcorn-Time-0.3.10-Setup.exe

TeamSpeak3-Client-win64-3.2.3.exe https://www.teamspeak.com/en/your-download/

Popcorn-Time-0.3.10-Mac.zip http://mirror03.popcorntime.sh/repo/build/ Popcorn-Time-0.3.10-Mac.zip

Panaustik64.exe https://www.panaustik.com/telechargement/

not sure, and 4 (or 11.4%) that they had seen the checksum. In sum, 88.6% of respondents did not
see or were not sure about whether the checksum was on the webpage. In the follow-up question,
we asked the 35 respondents to explain, in their own words, what is the purpose of the sequence of
letters and numbers (i.e., the checksum or digest). Unfortunately, only one respondent provided an
almost-correct explanation of the purpose of checksums: Elle sert a verifier que mon téléchargement
est bien téléchargé car il s’agit de logiciel et le fichier doit être intact (It is used to check that my
download is correctly downloaded because it is a software and the file has to be intact) [Business
School student]. The rest of the respondents provided answers that were incorrect: e.g., Peut-être un
numéro de série ou d’identification pour le programme (Maybe it is a serial number or identification
number for the program) [Basic Sciences student].

After a download event, we also prompted participants of the study with an rESM questionnaire
to understand whether they would do anything with the downloaded file before executing it. A
total of 155 responses from 97 distinct participants provided answers to this question during the
course of the study. The large majority of the responses (i.e., 124 or 80% of the responses) stated
they would directly execute the file. The remaining declared to either scan the file with an antivirus
software (i.e., 4 or 2.6% responses) or provided unclear answers (i.e., 26 or 16.8% responses). Only
one respondent reported performing a checksum verification on the file: Non, je fais confiance à
l’éditeur en l’occurrence. Sinon, je fais un check MD5 (No, I trust the developer. Otherwise, I do a
MD5 check) [Criminal Sciences student]. This shows a misconception regarding the trust assump-
tion: Checksums are used in the case where a third-party host is compromised, not the software
developer. It is interesting to notice that scanning a corrupted file with an antivirus might not
protect entirely from potential threats (e.g., malware with zero-day exploit).

At the end of the study we asked participants to complete a final task (see Section 6.2.1 above).
A total of 117 participants completed this step (while 17 participants dropped out at the very end).
Of the remaining participants, 48 (or 41%) were in the experimental condition (i.e., with extension
warnings active) and 69 (or 59%) participants were in the control group. During the final tasks,

ACM Transactions on Privacy and Security, Vol. 24, No. 1, Article 4. Publication date: September 2020.

https://www.gimp.org/downloads/
https://www.rstudio.com/products/rstudio/download/
https://cran.r-project.org/bin/macosx/
http://get.videolan.org/vlc/3.0.6/macosx/vlc-3.0.6.dmg
https://miktex.org/download
https://www.python.org/downloads/
https://www.rstudio.com/products/rstudio/download/
https://www.python.org/downloads/release/python-372/
https://nas-webdav.epfl.ch/vpsi1arch/images_vdi/ IC_CO_IN-SC-Local/
https://nas-webdav.epfl.ch/vpsi1arch/images_vdi/ IC_CO_IN-SC-Local/
https://miktex.org/download
https://www.python.org/downloads/release/python-372/
https://winscp.net/download/winscp576setup.exe
http://mirror03.popcorntime.sh/repo/build/ Popcorn-Time-0.3.10-Setup.exe
https://www.teamspeak.com/en/your-download/
http://mirror03.popcorntime.sh/repo/build/ Popcorn-Time-0.3.10-Mac.zip
https://www.panaustik.com/telechargement/

A Study on the Use of Checksums for Integrity Verification of Web Downloads 4:31

these participants were presented with the download of an app for which an incorrect checksum
was provided on the webpage. While almost all participants in the control group installed the
“malicious” app (except 4 or 3.4% participants who did not understand the instructions), 12 (or
10.3%) participants of the experimental condition did not complete the install process even if they
were instructed to do so. Most of the other people in the experimental condition who forced the
download by using the “Download again (dangerous)” button, did so because they trusted our in-
stitution: Si j’en crois ce qui a été affiché, ‘il a été corrompu’. Je présume qu’il s’agit cependant du
déroulement habituel de l’expérience (If I believe what is displayed, the file is corrupted. I presume
this is however the usual course of experience) [Criminal Sciences student]. This difference be-
tween the two groups has to be ascribed to the warnings of the browser extension, which made
participants more wary of the potential threat.

(RQ7) Would users feel more secure if they could use a system that automates parts of the veri-
fication process? On the last screen of the rESM questionnaire, we asked participants to rate the
perceived security of their computer using a Likert scale with 7 levels (this goes from 1 = Ex-
tremely insecure to 7 = Extremely secure). In the exit task of the study, a total of 117 participants
were asked to download and install two applications on their computer, one with a valid and one
with an invalid checksum. These participants experienced installing an application that could have
been potentially corrupted. To answer our RQ, we compared the security ratings provided by these
participants to the rESM question. A Kruskal-Wallis test showed that participants in the experi-
mental group reported higher security ratings (M = 5.0 points, SD = 1.4) for their computer than
participants in the control group (M = 4.3 points, SD = 1.7); H(1) = 8.83, p < .05.

6.4 Limitations

Our participants were all university students, hence their age was relatively homogeneous (around
20 years old). Typically, age is considered to be related to the level of technical expertise of the per-
son. However, recent research has revealed that cognitive ability and previous technology experience
are better predictors of the ability of people to solve information-retrieval tasks [52]. In the pre-
sented study, we did not control for these two factors. However, we might expect most university
students to possess relatively high cognitive abilities and to have had prior exposure to online
technology. Hence, we might expect a smaller share of users to understand and use checksums in
the general population than the share identified in our results.

Additionally, our experimental design required participants to regularly use Google Chrome
as their main browser or to be willing to use it primarily for the duration of the study. Although
Chrome holds the largest market share,27 there are lots of users that use alternatives such as Apple
Safari, Microsoft Edge, and IE. The interesting aspect to note is that while Safari, Edge, and IE
come preinstalled on computers running macOS and Windows, respectively, Chrome needs to be
installed, hence its users might be more tech-savvy than users who use the preinstalled browser.
Hence, we might expect that, by including users of these other browsers in the sample, we might
observe a smaller share of users who understand and use checksums than those identified in this
study.

Finally, in this study, we did not include browsing behavior on mobile devices. Reports show
that an increasing number of users access the Internet primarily—or exclusively—from a mobile
device.28 Going forward, research should study the use of checksums on mobile devices, which
might be specifically targeted by attackers.

27See https://en.wikipedia.org/wiki/Usage_share_of_web_browsers, last accessed June 2020.
28See https://www.pewresearch.org/internet/2019/06/13/mobile-technology-and-home-broadband-2019/, last accessed

June 2020.

ACM Transactions on Privacy and Security, Vol. 24, No. 1, Article 4. Publication date: September 2020.

https://en.wikipedia.org/wiki/Usage_share_of_web_browsers
https://www.pewresearch.org/internet/2019/06/13/mobile-technology-and-home-broadband-2019/

4:32 A. Meylan et al.

7 GENERAL DISCUSSION

The number of Internet users potentially exposed to corrupted files is alarming. Our previous large-
scale study [1] showed that, out of the 62.2% of all the respondents who download programs from
the Internet, only 6.1% do so exclusively from official app stores, such as the Mac App Store or the
Microsoft Store. Checksums, if used correctly, could therefore prevent the execution of potentially
malicious code for more than half of the users who download files from the Internet.

Sadly and as expected, our recent in-the-wild experiment confirmed that the vast majority of
participants (88.6%) do not notice the presence of checksums, even when they are visible on the
download page. To make things worse, most participants in our experiments did not know how to
use this information even when we pointed them to the part of the page that contains the check-
sum. However, when the browser extension was active, we observed differences in the partici-
pants’ reaction to corrupted downloads. Interestingly, only 25% of participants in this experiment
stopped the installation process of the program that has triggered the warning, whereas 40% of
them did so in the previous lab experiment. This is relatively surprising, as we might expect that
users would be more cautious with their own computer. However, it could also be due to the fact
that participants in the lab experiment were carefully instructed to follow some steps and were
in a controlled environment, whereas those in the in-the-wild experiment had fewer instructions
and were in their usual daily environment (where they dedicate less time to such tasks).

In this article, we have further uncovered some of the behavioral aspects that are associated
with a successful detection of a mismatch in two checksums, as performed in the browser’s UI
as well as in a separate program, i.e., the command-line. Our statistical analysis showed that the
number of transitions between the terminal and the web browser’s window is significantly higher
for participants who detected the mismatch, and that those participants also checked the entire
sequence more often than the ones who did not notice the mismatch. However, to our surprise,
the dwell time was smaller when the warning was shown, suggesting that the part of the UI that
carries the warning message was effective.

In sum, these findings indicate that manually inspecting the integrity of downloads is a process
that is cognitively intense, and requires a sophisticated mental model of the security concept be-
hind checksums. We cannot reasonably expect that most Internet users will be able to manually
perform these checks on downloaded files. Finally, even if we observed some positive effects of the
extension on users’ behavior, the results also show that we could improve the warning message
in order to further reduce the fraction of users who execute potentially harmful files downloaded
from the Internet.

In order to improve the security and usability of web downloads, we have shown that it was
crucial to automate the checksum verification process, as alluded to by Tan et al. [28]. We propose
an approach that consists of a mix of short- and long-term solutions. In the short term, our in-the-
wild experiment has shown that our proof-of-concept Chrome extension did not detect corrupted
files for any of the 17 downloads where it was triggered. Although the extension was very precise,
we cannot exclude that it missed some websites where the checksums were available in some
other form (e.g., an image or iframe element). Also, due to the limited sample size, we refrain
from generalizing the success rate to the entire Web.

Due to the challenges in assessing its recall and false positives, such a short-term solution is
likely insufficient to fully protect the 73% of the downloads (PDFs and executables) that could po-
tentially be harmful, if corrupted. Instead, as a long-term solution, we propose to extend the cov-
erage of the SRI specification [7] to include HTML a elements that point to files to be downloaded,
and optionally the meta and iframe elements. Such a solution would, however, require more effort
from the website owners (to serve the SRI integrity field), and perhaps from content creators as

ACM Transactions on Privacy and Security, Vol. 24, No. 1, Article 4. Publication date: September 2020.

A Study on the Use of Checksums for Integrity Verification of Web Downloads 4:33

well (to generate checksums for their files). Finally, it is also crucial to increase awareness about
the threat vectors antiviruses can and cannot handle. As we have observed, some participants felt
safe because they scanned files with an antivirus software. Unfortunately, an antivirus does not
protect from all possible threats, especially from malware with zero-day exploits.

We firmly believe that the entire web ecosystem (standards bodies, browser vendors, content
publishers, and end-users) would greatly benefit from a safer and more usable experience, if such
an obvious and arguably underexploited attack vector was eradicated.

8 CONCLUSION AND FUTURE WORK

In this work, we pursued a line of research on the use of checksums for integrity verification
of web downloads and made a number of contributions. In particular, we showed that the current
verification process is taxing and error prone, both in a controlled and in a real-world environment.
Specifically, we demonstrated that an adversary can successfully mount an attack by replacing a
program with a malware with a checksum that partially matches that of the program since many
users check only the beginning of the checksums.

The logical outcome of this work is to automate the checksum verification, so as to increase
the usability of this security feature and to make it available to non-technical users. Hence, as a
second contribution of this work, we developed a browser extension that computes the checksums
of the files downloaded from the Web and matches them against those found on webpages. The
usability evaluation of the extension suggested that it simplified the verification process and was
effective in dragging the user attention on the warnings describing the risks of downloading and
executing possibly corrupted files. The 4-month deployment of the extension showed that none
of the downloaded files (with a checksum available) were corrupted (even though such download
happened very rarely over the course of the study). This deployment further confirmed that warn-
ings were not always sufficient to prevent a user from downloading a corrupted file, thus that a
more disruptive change is needed to protect integrity of web downloads.

An interesting research avenue for future work is to investigate means for users to identify
the origin of the checksums displayed on download webpages (i.e., developer-generated vs. host-
generated) as well as means for handling updates of download files (i.e., the associated update of
the checksums). One possible option is to rely on digital signatures29 but such solutions might be
vulnerable to version-rollback attacks (e.g., a program file could be maliciously replaced with an
older version of it—with known exploitable vulnerabilities).

Finally, we are currently writing a W3C proposal to extend subresource integrity to other HTML
elements including links. We intend to promote our proposal to (and collaborate with) the different
stakeholders involved, that is the W3C and web browsers (e.g., Google, Mozilla) development teams
in order to have a concrete impact on the security of Internet users.

ACKNOWLEDGMENTS

The authors express their sincere gratitude to Italo Dacosta, Andreas Kramm, Nicolas Le
Scouarnec, Adrienne Porter Felt, Nina Taft, Lawrence You, and Blase Ur for their feedback. The
authors also warmly thank Holly Cogliati for her great editing job on the manuscript.

REFERENCES

[1] Mauro Cherubini, Alexandre Meylan, Bertil Chapuis, Mathias Humbert, Igor Bilogrevic, and Kévin Huguenin. 2018.

Towards usable checksums: Automating the integrity verification of web downloads for the masses. In Proceedings

29https://github.com/w3c/webappsec-subresource-integrity/blob/master/signature-based-restrictions-explainer.

markdown, for instance; last accessed: July 2020.

ACM Transactions on Privacy and Security, Vol. 24, No. 1, Article 4. Publication date: September 2020.

https://github.com/w3c/webappsec-subresource-integrity/blob/master/signature-based-restrictions-explainer.markdown
https://github.com/w3c/webappsec-subresource-integrity/blob/master/signature-based-restrictions-explainer.markdown

4:34 A. Meylan et al.

of the Conference on Computer and Communications Security (CCS). ACM, 1256–1271. DOI:http://dx.doi.org/10.1145/

3243734.3243746

[2] Karen Turner. 2016-07-15. Developers consider Apple’s app store restrictive and anticompetitive, report shows. Wash-

ington Post (2016-07-15).

[3] Swati Khandelwal. 2018. Flaw in Popular Transmission BitTorrent Client Lets Hackers Control Your PC Remotely.

https://thehackernews.com/2018/01/bittorent-transmission-hacking.html. (2018).

[4] Linux Mint Website Hacked; ISO Downloads Replaced with a Backdoor. Security News - Trend Mi-

cro USA. https://www.trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-threats/linux-mint-website-

hacked-iso-downloads-replaced-with-a-backdoor. ([n.d.]).

[5] Hsu-Chun Hsiao, Yue-Hsun Lin, Ahren Studer, Cassandra Studer, King-Hang Wang, Hiroaki Kikuchi, Adrian Perrig,

Hung-Min Sun, and Bo-Yin Yang. 2009. A study of user-friendly hash comparison schemes. In Proceedings of the

Computer Security Applications Conference (ACSAC). IEEE, 105–114. DOI:http://dx.doi.org/10.1109/ACSAC.2009.20

[6] Sergej Dechand, Dominik Schürmann, Karoline Busse, Yasemin Acar, Sascha Fahl, and Matthew Smith. 2016. An

empirical study of textual key-fingerprint representations. In Proceedings of the USENIX Security Symposium (USENIX

Security). USENIX.

[7] W3C. 2016. Subresource Integrity. https://www.w3.org/TR/SRI/. (2016).

[8] S. M. Furnell, P. Bryant, and A. D. Phippen. 2007. Assessing the security perceptions of personal Internet users.

Computers & Security 26, 5 (Aug. 2007), 410–417. DOI:http://dx.doi.org/10.1016/j.cose.2007.03.001

[9] Catherine L. Anderson and Ritu Agarwal. 2010. Practicing safe computing: A multimedia empirical examination of

home computer user security behavioral intentions. MIS Q. 34, 3 (Sept. 2010), 613–643.

[10] Vaidya Rishi. 2018. Cyber Security Breaches Survey 2018. Survey. United Kingdom.

[11] Elissa M. Redmiles, Sean Kross, and Michelle L. Mazurek. 2017. Where is the digital divide?: A survey of security,

privacy, and socioeconomics. In Proceedings of the ACM Conference on Human Factors in Computing Systems (CHI).

ACM, 931–936. DOI:http://dx.doi.org/10.1145/3025453.3025673

[12] Elissa M. Redmiles, Sean Kross, and Michelle L. Mazurek. 2016. How I learned to be secure: A census-representative

survey of security advice sources and behavior. In Proceedings of the ACM Conference on Computer and Communica-

tions Security (CCS). ACM, 666–677. DOI:http://dx.doi.org/10.1145/2976749.2978307

[13] Elisa M. Redmiles, Amelia R. Malone, and Michelle L. Mazurek. 2016. I think they’re trying to tell me something:

Advice sources and selection for digital security. In Proceedings of the IEEE Symposium on Security and Privacy (S&P).

272–288. DOI:http://dx.doi.org/10.1109/SP.2016.24

[14] Serge Egelman, Lorrie Faith Cranor, and Jason Hong. 2008. You’ve been warned: An empirical study of the effec-

tiveness of web browser phishing warnings. In Proceedings of the ACM Conference on Human Factors in Computing

Systems (CHI). ACM, 1065–1074. DOI:http://dx.doi.org/10.1145/1357054.1357219

[15] Joshua Sunshine, Serge Egelman, Hazim Almuhimedi, Neha Atri, and Lorrie Faith Cranor. 2009. Crying wolf: An

empirical study of SSL warning effectiveness. In Proceedings of the USENIX Security Symposium (USENIX Security).

USENIX, 399–416.

[16] Devdatta Akhawe and Adrienne Porter Felt. 2013. Alice in warningland: A large-scale field study of browser security

warning effectiveness. In Proceedings of the USENIX Security Symposium (USENIX Security). USENIX.

[17] Serge Egelman and Stuart Schechter. 2013. The importance of being earnest [in security warnings]. In Proceedings

of the International Conference on Financial Cryptography and Data Security (FC). Springer, 52–59. DOI:http://dx.doi.

org/10.1007/978-3-642-39884-1_5

[18] David Modic and Ross Anderson. 2014. Reading this may harm your computer: The psychology of malware warnings.

Computers in Human Behavior 41 (2014), 71–79.

[19] Antonio Bianchi, Jacopo Corbetta, Luca Invernizzi, Yanick Fratantonio, Christopher Kruegel, and Giovanni Vigna.

2015. What the app is that? Deception and countermeasures in the Android user interface. In Proceedings of the IEEE

Symposium on Security and Privacy (S&P). IEEE, 931–948. DOI:http://dx.doi.org/10.1109/SP.2015.62

[20] Jeffrey L. Jenkins, Bonnie Brinton Anderson, Anthony Vance, C. Brock Kirwan, and David Eargle. 2016. More harm

than good? How messages that interrupt can make us vulnerable. Information Systems Research 27, 4 (2016), 880–896.

[21] Mario Silic and Andrea Back. 2017. Deterrent effects of warnings on user’s behavior in preventing malicious software

use. In Proceedings of the Hawaii International Conference on System Sciences (HICSS).

[22] Robert W. Reeder, Adrienne Porter Felt, Sunny Consolvo, Nathan Malkin, Christopher Thompson, and Serge Egelman.

2018. An experience sampling study of user reactions to browser warnings in the field. In Proceedings of the Conference

on Human Factors in Computing Systems (CHI). ACM, 512:1–512:13. DOI:http://dx.doi.org/10.1145/3173574.3174086

[23] Cristian Bravo-Lillo, Saranga Komanduri, Lorrie Faith Cranor, Robert W. Reeder, Manya Sleeper, Julie Downs, and

Stuart Schechter. 2013. Your attention please: Designing security-decision UIs to make genuine risks harder to ignore.

In Proceedings of the Symposium on Usable Privacy and Security (SOUPS). ACM, 6:1–6:12. DOI:http://dx.doi.org/10.

1145/2501604.2501610

ACM Transactions on Privacy and Security, Vol. 24, No. 1, Article 4. Publication date: September 2020.

http://dx.doi.org/10.1145/3243734.3243746
http://dx.doi.org/10.1145/3243734.3243746
https://thehackernews.com/2018/01/bittorent-transmission-hacking.html
https://www.trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-threats/linux-mint-website-hacked-iso-downloads-replaced-with-a-backdoor
https://www.trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-threats/linux-mint-website-hacked-iso-downloads-replaced-with-a-backdoor
http://dx.doi.org/10.1109/ACSAC.2009.20
https://www.w3.org/TR/SRI/
http://dx.doi.org/10.1016/j.cose.2007.03.001
http://dx.doi.org/10.1145/3025453.3025673
http://dx.doi.org/10.1145/2976749.2978307
http://dx.doi.org/10.1109/SP.2016.24
http://dx.doi.org/10.1145/1357054.1357219
http://dx.doi.org/10.1007/978-3-642-39884-1_5
http://dx.doi.org/10.1007/978-3-642-39884-1_5
http://dx.doi.org/10.1109/SP.2015.62
http://dx.doi.org/10.1145/3173574.3174086
http://dx.doi.org/10.1145/2501604.2501610
http://dx.doi.org/10.1145/2501604.2501610

A Study on the Use of Checksums for Integrity Verification of Web Downloads 4:35

[24] Catherine S. Weir, Gary Douglas, Martin Carruthers, and Mervyn Jack. 2009. User perceptions of security, conve-

nience and usability for ebanking authentication tokens. Computers & Security 28, 1-2 (2009), 47–62.

[25] Leona Tam, Myron Glassman, and Mark Vandenwauver. 2010. The psychology of password management: A tradeoff

between security and convenience. Behaviour & Information Technology 29, 3 (2010), 233–244.

[26] Michael Fagan and Mohammad Maifi Hasan Khan. 2016. Why do they do what they do?: A study of what moti-

vates users to (not) follow computer security advice. In Proceedings of the Symposium on Usable Privacy and Security

(SOUPS). ACM, 59–75.

[27] K. Krombholz, K. Busse, K. Pfeffer, M. Smith, and E. von Zezschwitz. 2019. “If HTTPS were secure, I wouldn’t need

2FA” - End user and administrator mental models of HTTPS. In Proceedings of the IEEE Symposium on Security and

Privacy (S&P). IEEE, 1138–1155. DOI:http://dx.doi.org/10.1109/SP.2019.00060

[28] Joshua Tan, Lujo Bauer, Joseph Bonneau, Lorrie Faith Cranor, Jeremy Thomas, and Blase Ur. 2017. Can unicorns help

users compare crypto key fingerprints? In Proceedings of the ACM Conference on Human Factors in Computing Systems

(CHI). ACM, 3787–3798. DOI:http://dx.doi.org/10.1145/3025453.3025733

[29] N. Unger, S. Dechand, J. Bonneau, S. Fahl, H. Perl, I. Goldberg, and M. Smith. 2015. SoK: Secure messaging. In Proceed-

ings of the IEEE Symposium on Security and Privacy (S&P). IEEE, 232–249. DOI:http://dx.doi.org/10.1109/SP.2015.22

[30] Ruba Abu-Salma, M. Angela Sasse, Joseph Bonneau, Anastasia Danilova, Alena Naiakshina, and Matthew Smith.

2017. Obstacles to the adoption of secure communication tools. In Proceedings of the IEEE Symposium on Security and

Privacy (S&P). IEEE, 137–153. DOI:http://dx.doi.org/10.1109/SP.2017.65

[31] Elham Vaziripour, Justin Wu, Mark O’Neill, Ray Clinton, Jordan Whitehead, Scott Heidbrink, Kent Seamons, and

Daniel Zappala. 2017. Is that you, Alice? A usability study of the authentication ceremony of secure messaging

applications. In Proceedings of the Symposium on Usable Privacy and Security (SOUPS). ACM.

[32] Checksum On the Go. Chrome Webstore. https://chrome.google.com/webstore/detail/checksum-on-the-go/

fholnooplijidhdagedffljaphholpea. ([n.d.]).

[33] Files MD5 SHA1 Calculate & Compare. Add-Ons for Firefox. https://addons.mozilla.org/en-US/firefox/addon/

calculate-md5-sha1-hash-che-1/?src=search. ([n.d.]).

[34] Certificates and Digitally Signed Applications: A Double Edged Sword. https://eventtracker.com/tech-articles/

certificates-and-digitally-signed-applications-a-double-edged-sword/. (Feb. 2016).

[35] Nevena Vratonjic, Julien Freudiger, Vincent Bindschaedler, and Jean-Pierre Hubaux. 2013. The inconvenient truth

about web certificates. In Proceedings of the Workshop on Economics of Information Security and Privacy (WEIS).

Springer, 79–117. DOI:http://dx.doi.org/10.1007/978-1-4614-1981-5_5

[36] Justin Cappos, Justin Samuel, Scott Baker, and John H. Hartman. 2008. A look in the mirror: Attacks on package

managers. In Proceedings of the ACM Conference on Computer and Communications Security (CCS). ACM, 565–574.

DOI:http://dx.doi.org/10.1145/1455770.1455841

[37] Bart Preneel. 1994. Cryptographic hash functions. Transactions on Emerging Telecommunications Technologies 5, 4

(1994), 431–448.

[38] Computer Security Division, Information Technology Laboratory. NIST Policy on Hash Functions - Hash Functions

| CSRC. https://csrc.nist.gov/projects/hash-functions/nist-policy-on-hash-functions. ([n.d.]).

[39] Bertil Chapuis, Olamide Omolola, Mauro Cherubini, Mathias Humbert, and Kévin Huguenin. 2020. An empirical

study of the use of integrity verification mechanisms for web subresources. In Proceedings of the Web Conference.

ACM, 34–45. DOI:http://dx.doi.org/10.1145/3366423.3380092

[40] Bonnie Brinton Anderson, C. Brock Kirwan, Jeffrey L. Jenkins, David Eargle, Seth Howard, and Anthony Vance. 2015.

How polymorphic warnings reduce habituation in the brain: Insights from an fMRI study. In Proceedings of the ACM

Conference on Human Factors in Computing Systems (CHI). ACM, 2883–2892. DOI:http://dx.doi.org/10.1145/2702123.

2702322

[41] Adrienne Porter Felt, Alex Ainslie, Robert W. Reeder, Sunny Consolvo, Somas Thyagaraja, Alan Bettes, Helen Harris,

and Jeff Grimes. 2015. Improving SSL warnings: Comprehension and adherence. In Proceedings of the ACM Conference

on Human Factors in Computing Systems (CHI). ACM, 2893–2902. DOI:http://dx.doi.org/10.1145/2702123.2702442

[42] Mario Silic, Jordan Barlow, and Dustin Ormond. 2015. Warning! A comprehensive model of the effects of digital

information security warning messages. In Proceedings of the IFIP Workshop on Information Systems Security Research.

IFIP.

[43] Alex Poole and Linden J. Ball. 2006. Eye tracking in human-computer interaction and usability research: Current

status and future prospects. In Encyclopedia of Human Computer Interaction. 13.

[44] Joseph H. Goldberg, Mark J. Stimson, Marion Lewenstein, Neil Scott, and Anna M. Wichansky. 2002. Eye tracking

in web search tasks: Design implications. In Proceedings of the Symposium on Eye Tracking Research & Applications

(ETRA). ACM, 51. DOI:http://dx.doi.org/10.1145/507072.507082

[45] Marcel Adam Just and Patricia A. Carpenter. 1976. Eye fixations and cognitive processes. Cognitive Psychology 8, 4

(Oct. 1976), 441–480. DOI:http://dx.doi.org/10.1016/0010-0285(76)90015-3

ACM Transactions on Privacy and Security, Vol. 24, No. 1, Article 4. Publication date: September 2020.

http://dx.doi.org/10.1109/SP.2019.00060
http://dx.doi.org/10.1145/3025453.3025733
http://dx.doi.org/10.1109/SP.2015.22
http://dx.doi.org/10.1109/SP.2017.65
https://chrome.google.com/webstore/detail/checksum-on-the-go/fholnooplijidhdagedffljaphholpea
https://chrome.google.com/webstore/detail/checksum-on-the-go/fholnooplijidhdagedffljaphholpea
https://addons.mozilla.org/en-US/firefox/addon/calculate-md5-sha1-hash-che-1/?src=search
https://addons.mozilla.org/en-US/firefox/addon/calculate-md5-sha1-hash-che-1/?src=search
https://eventtracker.com/tech-articles/certificates-and-digitally-signed-applications-a-double-edged-sword/
https://eventtracker.com/tech-articles/certificates-and-digitally-signed-applications-a-double-edged-sword/
http://dx.doi.org/10.1007/978-1-4614-1981-5_5
http://dx.doi.org/10.1145/1455770.1455841
https://csrc.nist.gov/projects/hash-functions/nist-policy-on-hash-functions
http://dx.doi.org/10.1145/3366423.3380092
http://dx.doi.org/10.1145/2702123.2702322
http://dx.doi.org/10.1145/2702123.2702322
http://dx.doi.org/10.1145/2702123.2702442
http://dx.doi.org/10.1145/507072.507082
http://dx.doi.org/10.1016/0010-0285(76)90015-3

4:36 A. Meylan et al.

[46] Mauro Cherubini and Nuria Oliver. 2009. A refined experience sampling method to capture mobile user experience.

arXiv:0906.4125 [cs] (June 2009). arxiv:cs/0906.4125

[47] S. Consolvo and M. Walker. 2003. Using the experience sampling method to evaluate ubicomp applications. IEEE

Pervasive Computing 2, 2 (Jun 2003), 24–31. DOI:http://dx.doi.org/10.1109/MPRV.2003.1203750

[48] Giovanni Iachello, Khai N. Truong, Gregory D. Abowd, Gillian R. Hayes, and Molly Stevens. 2006. Prototyping and

sampling experience to evaluate ubiquitous computing privacy in the real world. In Proceedings of the SIGCHI Confer-

ence on Human Factors in Computing Systems (CHI). ACM, 1009–1018. DOI:http://dx.doi.org/10.1145/1124772.1124923

[49] Clara Mancini, Keerthi Thomas, Yvonne Rogers, Blaine A. Price, Lukazs Jedrzejczyk, Arosha K. Bandara, Adam N.

Joinson, and Bashar Nuseibeh. 2009. From spaces to places: Emerging contexts in mobile privacy. In Proceedings of

the International Conference on Ubiquitous Computing (UbiComp). ACM, 1–10. DOI:http://dx.doi.org/10.1145/1620545.

1620547

[50] Stephen S. Intille, John Rondoni, Charles Kukla, Isabel Ancona, and Ling Bao. 2003. A context-aware experience

sampling tool. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI) - Extended

Abstracts. ACM, 972–973. DOI:http://dx.doi.org/10.1145/765891.766101

[51] Florian Schmitt, Jan Gassen, and Elmar Gerhards-Padilla. 2012. PDF scrutinizer: Detecting JavaScript-based attacks

in PDF documents. In Proceedings of the International Conference on Privacy, Security and Trust (PST). IEEE, 104–111.

DOI:http://dx.doi.org/10.1109/PST.2012.6297926

[52] Michael Crabb and Vicki L. Hanson. 2014. Age, technology usage, and cognitive characteristics in relation to perceived

disorientation and reported website ease of use. In Proceedings of the International ACM SIGACCESS Conference on

Computers & Accessibility (ASSETS). ACM, 193–200. DOI:http://dx.doi.org/10.1145/2661334.2661356

Received December 2019; revised July 2020; accepted July 2020

ACM Transactions on Privacy and Security, Vol. 24, No. 1, Article 4. Publication date: September 2020.

http://dx.doi.org/10.1109/MPRV.2003.1203750
http://dx.doi.org/10.1145/1124772.1124923
http://dx.doi.org/10.1145/1620545.1620547
http://dx.doi.org/10.1145/1620545.1620547
http://dx.doi.org/10.1145/765891.766101
http://dx.doi.org/10.1109/PST.2012.6297926
http://dx.doi.org/10.1145/2661334.2661356

